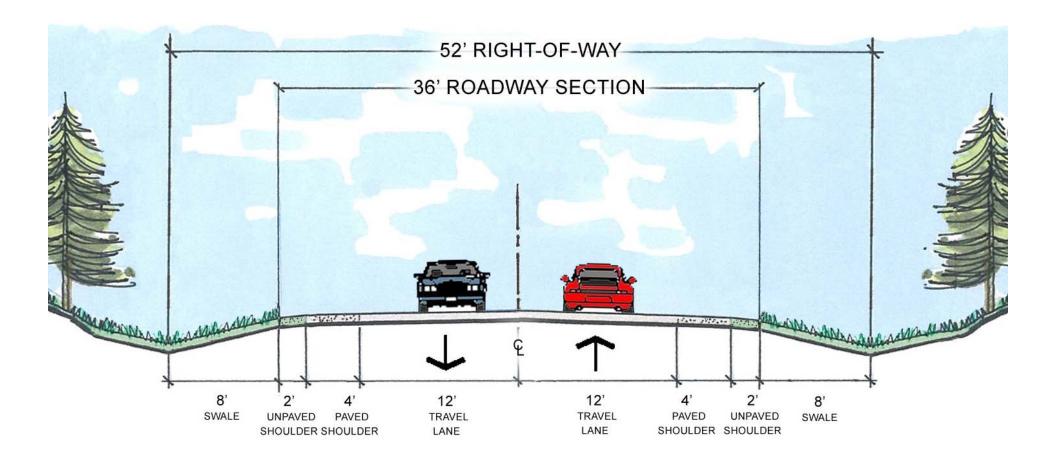


Lesson 3: Pavement Drainage - Pipe Network Sizing (HM Chpt 5 & 6)

Objectives

• Understand roadway geometrics

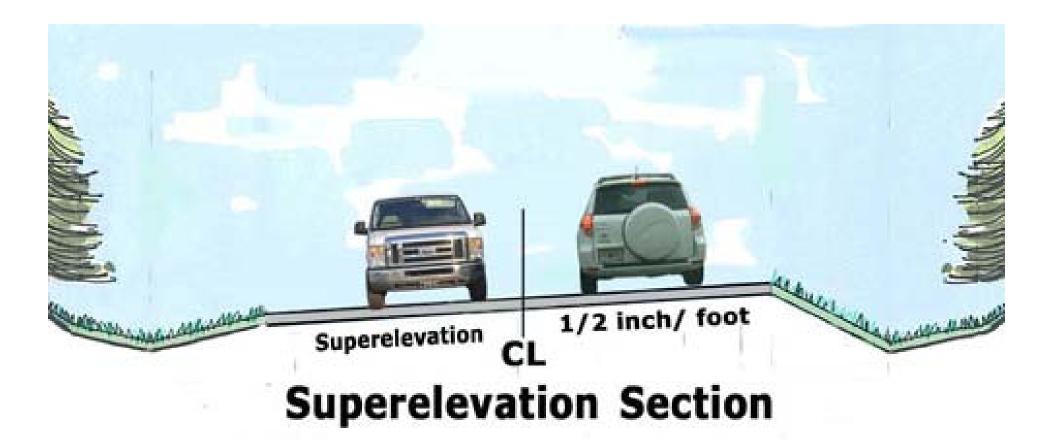
- Develop basin hydrology flowing to the structure(s) you are designing
- Know the different types of grate inlets, catch basins, and manholes
- Complete Inlet Spacing Calculations using the WSDOT spreadsheet
- Complete a pipe networks design using the WSDOT spreadsheet


Roadway Geometrics

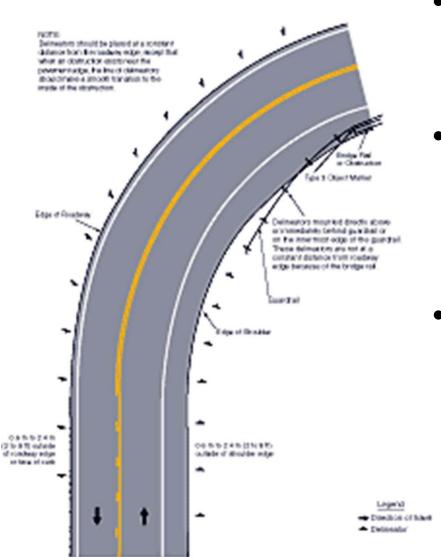
Roadway Cross Sections

- Tangent Sections or Crown Sections (High point is in the middle of the roadway)
- Full Super elevation or Curve Sections (High point is on one side of the roadway)

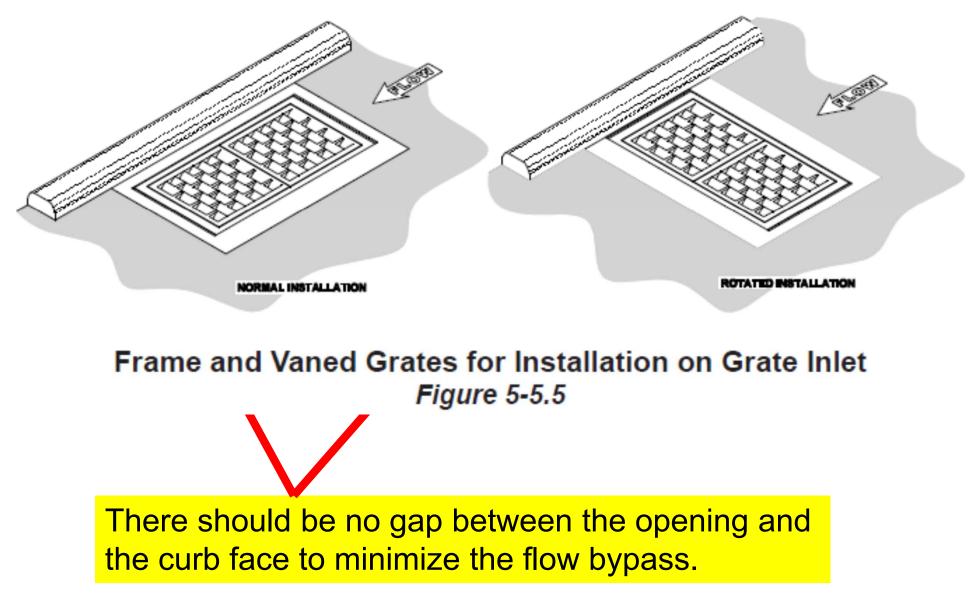
Normal Crown Section


Normal Crown Section

Normal Crown Section


Super elevation Section

Superelevation Section



WSDOT

- Put catch basins on the lower side of the road.
- Flow bypass must be equal or less than 0.1 cfs flowing across the travel lanes.
- Pay attention to locations where the roadway superelevation goes to zero when a tangent section goes to a curve; the Z_d gets very wide!

Catch Basin Installation

Hydrology

$$=\frac{m}{(T_c)^n}$$

Where:

- rainfall intensity in inches per hour (millimeters per hour)
- T_c = time of concentration in minutes

m & n = coefficients in dimensionless units (Figures 2-5.4A and 2-5.4B)

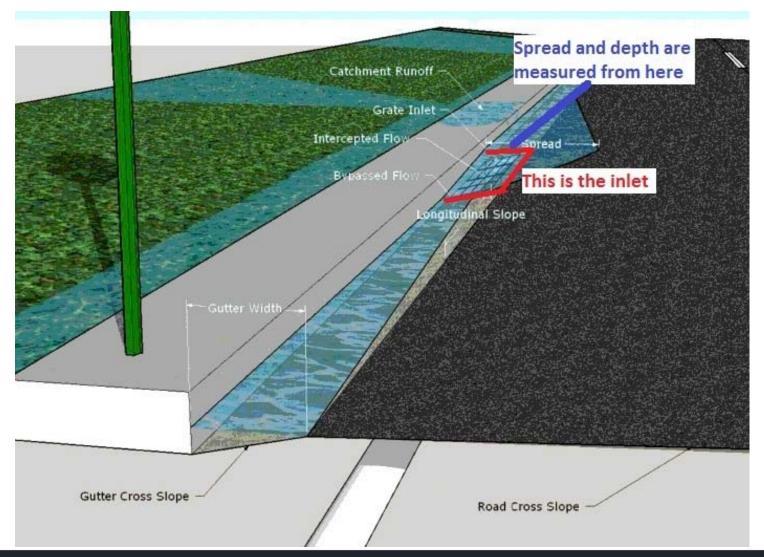
Tc: use 5 minutes

Rational Method

Q= CIA

Q: Flow in cfs

C: coefficient (0.9 for pavement)

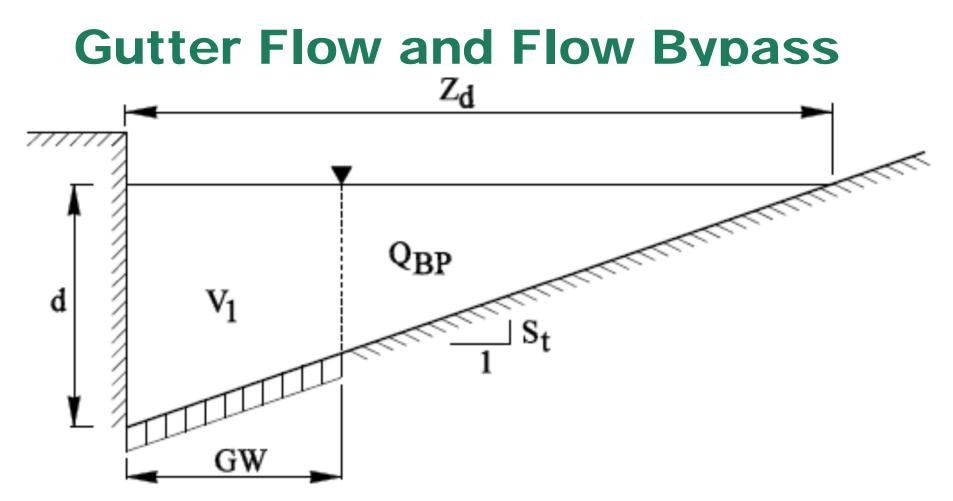

I: rainfall intensities vary from one location to another

A: catchment area in acres (tributary area flowing to the catch basin)

Gutter Flow

Flow running along the curb face or the face of a cement concrete barrier.

🕏 WSDOT


Grate Inlets and Catch Basins

Standard Plans

http://www.wsdot.wa.gov/Design/Standards/#SectionB

		Continuous Grade ¹		Sump Condition ² Perimeter Flows as Weir	
	-	Grate	<u>Grate</u>		
Standard Plan	Description	Width	Length	Width	Length
B-30. <u>5</u> 0 ³	Rectangular Herringbone Grate	1.67 ft (0.50 m)	<u>2.0 ft</u> <u>(0.61 m)</u>	0.69 ft (0.21 m)	0.78 ft (0.24 m)
B-30.30 or 30.40 ⁸	Vaned Grate for Catch Basin and Inlet	1.67 ft (0.50 m	<u>2.0 ft</u> (0.61 m)	1.31 ft (0.40 m)	1.25 ft (0.38 m)
B-25.20 ²	Combination Inlet	1.67 ft (0.50 m	<u>2.0 ft</u> <u>(0.61 m)</u>	1.31 ft (0.40 m)	1.25 ft (0.38 m)
<u>B-40.20</u>	Grate Inlet Type 1 (Grate A or B ⁴)	2.01 ft (0.62 m) 3.89 ft ⁷ (1.20 m)	<u>3.89 ft</u> (0.62 m) 2.01 ft ⁷ (1.20 m)	1.67 ft (0.50 m) 3.52 ft (1.07 m)	3.52 ft (1.07 m) 1.67 ft (0.50 m)
B-30.80	Circular Grate ⁹	1.52 ft (0.47 m)		<u>2.55 ft</u> ¹⁰ (0.79 m)	
B-40.40	Frame and Vaned Grates for Grate Inlet Type 2	1.75 ft ⁵ (0.52 m) 3.52 ft ⁶ (1.05 m)	3.52 ft ⁵ (1.05 m) 1.75 ft ⁶ (0.52 m)	1.29 ft (0.40 m) 2.58 ft ⁶ (0.80 m)	<u>2.58 ft</u> (0.50 m) 1. <u>29</u> ft ⁶ (0.26 m)

WSDOT

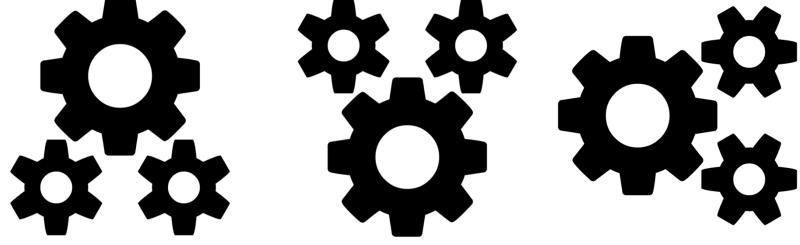
 Z_d : flow spread width from curb/barrier face into the travel lane Q_{BP} : flow bypass GW: grate width in feet d: flow depth at the curb face in feet

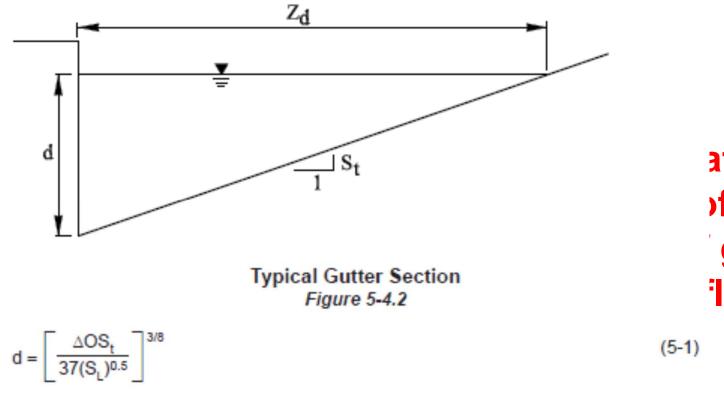
 V_1 : velocity of flow in feet per second

WSDOT

Gutter Analysis/Inlet Spacing

Use the WSDOT Inlet Spacing Spreadsheet http://wsdot.wa.gov/Design/Hydraulics/ProgramDownloads.htm


Goal: to determine the space between catch basins or inlets.



Inlet Spacing Design

- Uses Rational Method Q = CIA
- Catchment area or pavement draining to inlet being designed is defined by begin/end station and roadway width
- Roadway longitudinal slope and transverse (cross) slope
- Allowable width of flow (flow spread or Z_d allowable)
- 0.1 cfs maximum flow allowed to bypass last inlet (Q_{bp})
- If flow is slow enough and gutter is flat, spreadsheet allows more flow into inlet (automatically done for you!)

$$Z_d = \frac{d}{S_t}$$

Where:

- = depth of flow at the face of the curb (ft) d
- ∆O = gutter discharge (cfs)
- S_L = longitudinal slope of the gutter (ft/ft) S_t = transverse slope or superelevation (ft/ft)
- Z_d = top width of the flow prism (ft)

ations show of flow as a gutter **low rate**

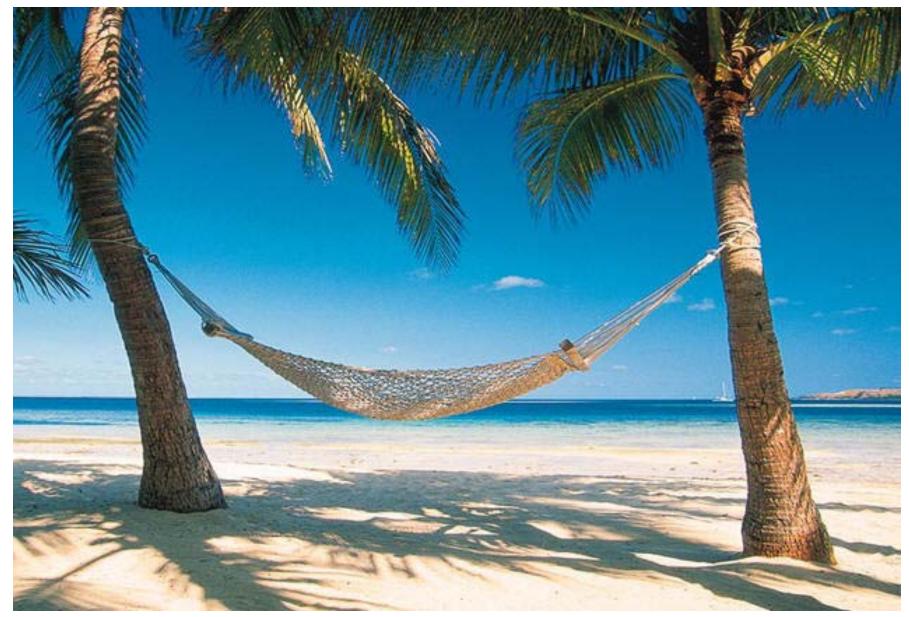
(5-2)

WSDOT

Allowable Flow Spreads

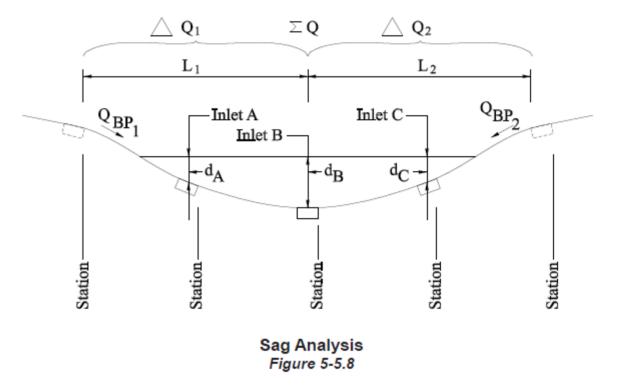
Road Classification		Design Frequency	Design Spread (Zd)	
Interstate, Principal, Minor Arterial, or Divided	< 45 mph (70 km/hr) ≥ 45 mph (70 km/hr) Sag Pt.	10-year 10-year 50-year	Shoulder+2 ft (0.67 m) ¹ Shoulder Shoulder+2 ft (0.67 m) ¹	
Collector and Local Streets	< 45 mph (70 km/hr) ≥ 45 mph (70 km/hr) Sag Pt.	10-year 10-year 50-year	Shoulder+1 ¹ / ₂ Driving Lane ² Shoulder 1 ¹ / ₂ Driving Lane ²	

¹The travel way shall have at least 10 ft that is free of water.


²In addition to the design spread requirement, the depth of flow shall not exceed 0.12 ft at the edge of shoulder.

Design Frequency and Spread Figure 5-4.1

Roadway classification + Design Speeds = Design Spread (Z_d) Also lists criteria for Sag Analysis


Sag Design

Sag Design

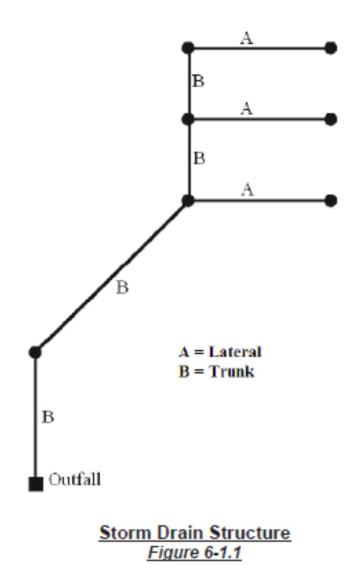
Sag: lowest elevation in the roadway. Higher elevations on both ends.

Once an inlet has been placed in a sag location, the total actual flow to the inlet can be determined as shown below. Q_{Total} must be less than $Q_{allowable}$ as described in Equation 5-13.

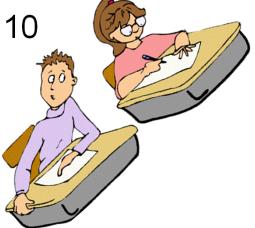
$$Q_{\text{Total}} = Q_{\text{BP1}} + Q_{\text{BP2}} + \Delta Q_1 + \Delta Q_2 \tag{5-11}$$

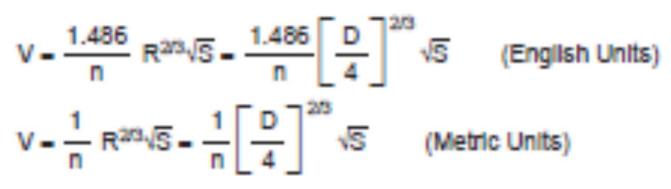
WSDOT

Sag Design


- 50 years storm event
- Flow spread: shoulder + 2 feet or ½ of the driving lane.
- Flanking inlets on both sides
- Sag Design Spreadsheet <u>http://wsdot.wa.gov/Design/Hydraulics/Progr</u> <u>amDownloads.htm</u>

Storm Drains


Pipe Networks



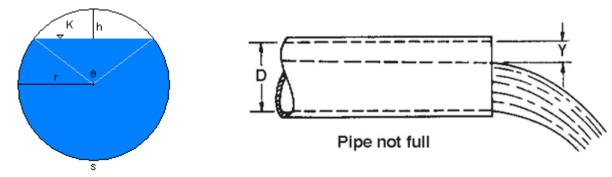
Storm Drain Cheat Sheet

- Minimum pipe diameter is 12 inches except 8 inches for laterals less than 50 feet long
- Inlet spacing and storm drain design compliment each other
- Maximum storm drain length = 300 feet but may be less depending on maintenance input
- Velocity in storm drain should be > 3 fps but < 10 fps
- Match pipe crowns (tops), not pipe inverts
- Pipe angles coming into a CB, MH, or Inlet should be constructible (see pipe angle calculator spreadsheet on WSDOT website)
- Consider maintenance when designing storm drain pipe network for structure depths and pipe lengths

Flow Velocities

(6-1)

Where:


- V = velocity in ft/s (m/s)
- D = pipe diameter in feet (meters)
- S = pipe slope in feet/foot (meters/meter)
- Manning's roughness coefficient (see Appendix 4-1)

R = cross area / wetted perimeter of the pipe

Pipe Capacities

- Q = VA
- Q = flow capacity in cfs
- V = flow velocity in fps
- A = cross area of the flow section

Group Designs

Exercises:

- 1) Inlet Spacing Design Exercise 1
- 2) Sag Design Exercise 2
- 3) Pipe Network Exercise 3

Inlet Spacing Exercise 1

Open up Day1 Exercises PPT file

