

|  | Publication Title / Publication Number                    | Date |  |  |  |  |
|--|-----------------------------------------------------------|------|--|--|--|--|
|  | January 2022                                              |      |  |  |  |  |
|  | Originating Organization                                  |      |  |  |  |  |
|  | Materials Laboratory, Engineering and Regional Operations |      |  |  |  |  |

Remarks and Instructions

The *Materials Manual* M 46-01 has been revised. Please remove and recycle the contents of the old *Materials Manual* M 46-01 and replace with the January 2022 revision.

The complete manual, revision packages, and individual chapters can be accessed at www.wsdot.wa.gov/publications/manuals/m46-01.htm.

For updating printed manuals, page numbers indicating portions of the manual that are to be removed and replaced are shown below.

|            | Chapter                                                                                     | Remove<br>Pages | Insert<br>Pages |
|------------|---------------------------------------------------------------------------------------------|-----------------|-----------------|
| Title Page |                                                                                             | 1 – 2           | 1 – 2           |
| Contents   |                                                                                             | 1 – 22          | 1 – 22          |
| QC 8       | Standard Practice for Development, Submittal and Approval of Hot Mix Asphalt Mix Designs    | 1 – 6           | 1 – 6           |
| QC 11      | Standard Practice for Aggregate Producers Participating in the Quality<br>Aggregate Program | 1 – 2           | 1 – 4           |
| QC 12      | Standard Practice for Evaluation of Aggregate Sources                                       | 1 – 2           | 1 – 4           |
| TM 2       | FOP for WAQTC TM 2, Sampling Freshly Mixed Concrete                                         | 1 – 8           | 1 – 8           |
| TM 14      | Laboratory Prepared Asphalt Mixture Specimens                                               | 1 – 18          | 1 – 18          |
| TM 15      | Laboratory Theoretical Maximum Dry Density of Granular Soil and Soil/<br>Aggregate          | 1 – 26          | 1 – 26          |
| T 23       | Method of Making and Curing Concrete Test Specimens in the Field                            | 1 – 12          | N/A             |
| T 27_T 11  | FOP for AASHTO T 27_T 11, Sieve Analysis of Fine and Coarse Aggregates                      | 1 – 46          | 1 – 46          |
| T 30       | FOP for AASHTO T 30, Mechanical Analysis of Extracted Aggregate                             | 1 – 16          | 1 – 16          |
| R 47       | FOP for AASHTO R 47, Reducing Samples of Asphalt Mixtures to<br>Testing Size                | 1 – 12          | 1 – 12          |
| R 66       | FOP for AASHTO R 66, Sampling Asphalt Materials                                             | 1 – 4           | 1 – 4           |
| R 75       | FOP for AASHTO R 75, Developing a Family of Curves                                          | 1 – 4           | 1 – 4           |
| R 76       | FOP for AASHTO R 76, Reducing Samples of Aggregate to Testing Size                          | 1 – 10          | 1 – 10          |
| R 79       | Vacuum Drying Compacted Asphalt Specimens                                                   | 1 – 8           | 1 – 4           |
| Т 85       | FOP for AASHTO T 85, Specific Gravity and Absorption of<br>Coarse Aggregate                 | 1 – 8           | 1 – 8           |
| T 89       | Determining the Liquid Limit of Soils                                                       | 1 – 4           | 1 – 4           |

|       | Chapter                                                                                                                                  | Remove<br>Pages | Insert<br>Pages |
|-------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|
| R 90  | FOP for AASHTO R 90, Sampling Aggregate Products                                                                                         | 1 – 12          | 1 – 12          |
| R 97  | FOP for AASHTO R 97, Sampling of Asphalt Mixtures                                                                                        | 1 – 14          | 1 – 14          |
| Т 99  | FOP for AASHTO T 99, Moisture-Density Relations of Soils Using a 5.5 lb<br>(2.5 kg) Rammer and a 12 in (305 mm) Drop                     | 1 – 20          | 1 – 20          |
| R 100 | Method of Making and Curing Concrete Test Specimens in the Field                                                                         | N/A             | 1 – 12          |
| T 119 | FOP for AASHTO T 119, Slump of Hydraulic Cement Concrete                                                                                 | 1 – 4           | 1 – 4           |
| T 121 | FOP for AASHTO T 121, Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete                                            | 1 – 18          | 1 – 18          |
| T 123 | Method of Test for Bark Mulch                                                                                                            | 1 – 4           | 1 – 4           |
| T 152 | FOP for AASHTO T 152, Air Content of Freshly Mixed Concrete by the<br>Pressure Method                                                    | 1 – 8           | 1 – 8           |
| T 166 | FOP for AASHTO T 166, for Bulk Specific Gravity of Compacted Asphalt<br>Mixtures Using Saturated Surface-Dry Specimens                   | 1 – 12          | 1 – 12          |
| T 176 | FOP for AASHTO T 176, Plastic Fines in Graded Aggregates and Soils by the Use of the Sand Equivalent Test                                | 1 – 10          | 1 – 10          |
| T 180 | FOP for AASHTO T 180, Moisture-Density Relations of Soils Using a 10 lb<br>(4.54 kg) Rammer and an 18 in (457 mm) Drop                   | 1 – 22          | 1 – 22          |
| T 209 | FOP for AASHTO T 209, Theoretical Maximum Specific Gravity (G <sub>mm</sub> ) and Density of Asphalt Mixtures                            | 1 – 12          | 1 – 12          |
| T 255 | FOP for AASHTO T 255, Total Evaporable Moisture Content of Aggregate<br>by Drying                                                        | 1 – 10          | 1 – 10          |
| T 265 | FOP for AASHTO T 265, Laboratory Determination of Moisture Content<br>of Soils                                                           | 1 – 12          | 1 – 12          |
| T 272 | FOP for AASHTO T 272, One-Point Method for Determining Maximum Dry<br>Density and Optimum Moisture                                       | 1 – 12          | 1 – 12          |
| Т 304 | Uncompacted Void Content of Fine Aggregate                                                                                               | 1 – 12          | 1 – 12          |
| T 308 | FOP for AASHTO T 308, Determining the Asphalt Binder Content of Asphalt<br>Mixtures by the Ignition Method                               | 1 – 16          | 1 – 16          |
| Т 309 | FOP for AASHTO T309, Temperature of Freshly Mixed Portland<br>Cement Concrete                                                            | 1 – 4           | 1 – 4           |
| T 310 | FOP for AASHTO T 310, In-Place Density and Moisture Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)                | 1 – 10          | 1 – 10          |
| T 312 | FOP for AASHTO T 312, Preparing and Determining the Density of Asphalt<br>Mixture Specimens by Means of the Superpave Gyratory Compactor | 1 – 8           | 1 – 8           |
| T 324 | Hamburg Wheel-Track Testing of Compacted Hot Mix Asphalt (HMA)                                                                           | 1 – 4           | 1 – 4           |
| Т 329 | FOP for AASHTO T 329, Moisture Content of Asphalt Mixture by<br>Oven Method                                                              | 1 – 6           | 1 – 6           |
| T 331 | Bulk Specific Gravity (G <sub>mb</sub> ) and Density of Compacted Asphalt Mixtures<br>Using Automatic Vacuum Sealing Method              | 1 – 8           | 1 – 8           |
| Т 335 | FOP for AASHTO T 335, Determining the Percentage of Fracture in<br>Coarse Aggregate                                                      | 1 – 10          | 1 – 10          |

|         | Chapter                                                                                                                      | Remove<br>Pages | Insert<br>Pages |
|---------|------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|
| T 355   | FOP for AASHTO T 355, In-Place Density of Asphalt Mixtures by<br>Nuclear Methods                                             | 1 – 14          | 1 – 14          |
| T 606   | Method of Test for Compaction Control of Granular Materials                                                                  | 1 – 12          | N/A             |
| SOP 615 | Determination of the % Compaction for Embankment &<br>Untreated Surfacing Materials Using the Nuclear Moisture-Density Gauge | 1 – 6           | 1 – 6           |
| T 810   | Method of Test for Determination of the Density of Portland Cement<br>Concrete Pavement Cores                                | 1 – 4           | N/A             |
| T 812   | Method of Test for Measuring Length of Drilled Concrete Cores                                                                | 1 – 4           | N/A             |
| T 819   | Making and Curing Self-Compacting Concrete Test Specimens in the Field                                                       | 1 – 4           | 1 – 4           |
| T 914   | Practice for Sampling of Geosynthetic Material for Testing<br>renumbered to SOP 914                                          | 1 – 4           | 1 – 2           |
| T 915   | Practice for Conditioning of Geotextiles for Testing                                                                         | 1 – 2           | 1 – 2           |

Please contact Kevin Burns at 360-709-5412 or mawdslr@wsdot.wa.gov with comments, questions, or suggestions for improvement to the manual.

To get the latest information, please sign up for email updates for individual publications at www.wsdot.wa.gov/publications/manuals.

Washington State Department of Transportation Materials Laboratory PO Box 47365 Olympia, WA 98504-7365 www.wsdot.wa.gov/business/materialslab/default.htm This page intentionally left blank.

# **Materials Manual**

M 46-01.40

December 2022

**Engineering and Regional Operations** State Materials Laboratory

**Americans with Disabilities Act (ADA) Information:** This material can be made available in an alternate format by emailing the Office of Equal Opportunity at wsdotada@wsdot.wa.gov or by calling toll free, 855-362-4ADA(4232). Persons who are deaf or hard of hearing may make a request by calling the Washington State Relay at 711.

**Title VI Notice to Public**: It is the Washington State Department of Transportation's (WSDOT) policy to assure that no person shall, on the grounds of race, color, national origin or sex, as provided by Title VI of the Civil Rights Act of 1964, be excluded from participation in, be denied the benefits of, or be otherwise discriminated against under any of its programs and activities. Any person who believes his/ her Title VI protection has been violated, may file a complaint with WSDOT's Office of Equal Opportunity (OEO). For additional information regarding Title VI complaint procedures and/or information regarding our non-discrimination obligations, please contact OEO's Title VI Coordinator at 360-705-7090.

# Contents

|                |        |              |              | Aggregate                                                                                                     |
|----------------|--------|--------------|--------------|---------------------------------------------------------------------------------------------------------------|
| Procedure      |        | Field        | In           |                                                                                                               |
| Number         | Owner  | Use          | Manua        |                                                                                                               |
| T 11           | AASHTO |              |              | Materials Finer Than 0.075 mm (No. 200) Sieve in Mineral Aggregates by Washing                                |
| T 19           | AASHTO | $\checkmark$ | $\checkmark$ | Bulk Density ("Unit Weight") and Voids in Aggregate (Rodding Procedure Only) (Checklist Only)                 |
| T 21           | AASHTO |              |              | Organic Impurities in Fine Aggregates for Concrete                                                            |
| T 27           | AASHTO |              |              | Sieve Analysis of Fine and Coarse Aggregates                                                                  |
| T 27_T 11      | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 27_T 11, Sieve Analysis of Fine and Coarse<br>Aggregates                                     |
| Т 37           | AASHTO |              |              | Sieve Analysis of Mineral Filler for Hot Mix Asphalt (HMA)                                                    |
| R 76           | AASHTO |              |              | Reducing Samples of Aggregate to Testing Size                                                                 |
| R 76           | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO R 76, Reducing Samples of Aggregate to Testing Size                                            |
| T 84           | AASHTO |              |              | Specific Gravity and Absorption of Fine Aggregates                                                            |
| T 85           | AASHTO |              |              | Specific Gravity and Absorption of Coarse Aggregate                                                           |
| T 85           | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 85, Specific Gravity and Absorption of Coarse<br>Aggregate                                   |
| R 90           | AASHTO |              |              | Sampling Aggregate Products                                                                                   |
| R 90           | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO R 90, Sampling Aggregate Products                                                              |
| Т 96           | AASHTO |              |              | Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion<br>and Impact in the Los Angeles Machine |
| T 112          | AASHTO |              | $\checkmark$ | Clay Lumps and Friable Particles in Aggregate                                                                 |
| T 113          | WSDOT  |              | $\checkmark$ | Method of Test for Determination of Degradation Value                                                         |
| T 123          | WSDOT  | $\checkmark$ | $\checkmark$ | Method of Test for Bark Mulch                                                                                 |
| T 125          | WSDOT  |              | $\checkmark$ | Determination of Fiber Length Percentages in Wood Strand Mulch                                                |
| T 126          | WSDOT  |              | $\checkmark$ | Determination of Fiber Length Percentages in Hydraulically-Applied<br>Erosion Control Products                |
| SOP 128        | WSDOT  | $\checkmark$ | $\checkmark$ | Sampling for Aggregate Source Approval                                                                        |
| T 176          | AASHT0 |              |              | Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test                               |
| T 176          | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 176, Plastic Fines in Graded Aggregates and Soils by the Use of the Sand Equivalent Test     |
| T 255          | AASHTO |              |              | Total Evaporable Moisture Content of Aggregate by Drying                                                      |
| T 255          | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 255, Total Evaporable Moisture Content of Aggregate by Drying                                |
| T 288          | AASHTO |              | $\checkmark$ | Determining Minimum Laboratory Soil Resistivity (Checklist Only)                                              |
| T 289          | AASHTO |              |              | Determining pH of Soil for Use in Corrosion Testing                                                           |
| T 304          | AASHTO |              |              | Uncompacted Void Content of Fine Aggregate                                                                    |
| T 304          | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 304, Uncompacted Void Content of Fine Aggregate                                              |
| T 335          | AASHTO |              |              | Determining the Percentage of Fracture in Coarse Aggregate                                                    |
| T 304<br>T 335 |        | $\checkmark$ | $\checkmark$ |                                                                                                               |

|                     | Aggregate  |              |              |                                                                                  |  |  |
|---------------------|------------|--------------|--------------|----------------------------------------------------------------------------------|--|--|
| Procedure<br>Number | e<br>Owner | Field<br>Use | In<br>Manual | Test Method                                                                      |  |  |
| Т 335               | WAQTC      | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 335, Determining the Percentage of Fracture in Coarse Aggregate |  |  |
| T 417               | WSDOT      |              | $\checkmark$ | Method of Test for Determining Minimum Resistivity and pH of Soil and Water      |  |  |
| T 716               | WSDOT      | $\checkmark$ | $\checkmark$ | Method of Random Sampling for Locations of Testing and Sampling Sites            |  |  |

|                     |        |              |              | Bituminous Cement                                                                                          |
|---------------------|--------|--------------|--------------|------------------------------------------------------------------------------------------------------------|
| Procedure<br>Number | Owner  | Field<br>Use | In<br>Manua  | Test Method                                                                                                |
| R 28                | AASHTO |              |              | Standard Practice for Accelerated Aging of Asphalt Binder Using a<br>Pressurized Aging Vessel              |
| R 29                | AASHTO |              |              | Standard Practice for Grading or Verifying the Performance Grade (PG) of an Asphalt Binder                 |
| T 44                | AASHTO |              |              | Solubility of Bituminous Materials                                                                         |
| T 48                | AASHTO |              |              | Flash and Fire Points by Cleveland Open Cup                                                                |
| T 49                | AASHTO |              |              | Penetration of Bituminous Materials                                                                        |
| T 50                | AASHTO |              |              | Float Test for Bituminous Materials                                                                        |
| T 51                | AASHTO |              |              | Ductility of Asphalt Materials                                                                             |
| Т 53                | AASHTO |              |              | Softening Point of Bitumen (Ring-and-Ball Apparatus)                                                       |
| T 59                | AASHTO |              |              | Emulsified Asphalts                                                                                        |
| R 66                | AASHTO |              |              | Sampling Asphalt Materials                                                                                 |
| R 66                | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO R 66, Sampling Asphalt Materials                                                            |
| E 70                | ASTM   |              |              | pH of Aqueous Solutions With the Glass Electrode                                                           |
| T 72                | AASHTO |              |              | Saybolt Viscosity                                                                                          |
| T 228               | AASHTO |              |              | Specific Gravity of Semi-Solid Asphalt Materials                                                           |
| T 240               | AASHTO |              |              | Effect of Heat and Air on a Moving Film of Asphalt Binder<br>(Rolling Thin-Film Oven Test)                 |
| T 301               | AASHTO |              |              | Elastic Recovery Test of Asphalt Materials by Means of a Ductilometer                                      |
| T 313               | AASHTO |              |              | Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR)          |
| T 315               | AASHTO |              |              | Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR)             |
| T 316               | AASHTO |              |              | Viscosity Determination of Asphalt Binder Using Rotational Viscometer                                      |
| SOP 318             | WSDOT  |              | $\checkmark$ | Standard Operating Procedure for Melting of Flexible Bituminous<br>Pavement Marker Adhesive for Evaluation |
| T 350               | AASHTO |              |              | Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Reheometer (DSR)        |
| T 426               | WSDOT  |              | $\checkmark$ | Pull-Off Test for Hot Melt Traffic Button Adhesive                                                         |
| D 3111              | ASTM   |              |              | Flexibility Determination of Hot-Melt Adhesives by Mandrel Bend<br>Test Method                             |

|                     |        |              |              | Asphalt Mixture                                                                                                                          |
|---------------------|--------|--------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Procedure<br>Number | Owner  | Field<br>Use | In<br>Manual | Test Method                                                                                                                              |
| R 30                | AASHTO |              | Mariaa       | Standard Practice for Mixture Conditioning of Hot Mix Asphalt (HMA)                                                                      |
| T 30                | AASHTO |              |              | Mechanical Analysis of Extracted Aggregate                                                                                               |
| T 30                | WAQTC  | ✓            | $\checkmark$ | FOP for AASHTO T 30, Mechanical Analysis of Extracted Aggregate                                                                          |
| TM 14               | WAQTC  | •            |              |                                                                                                                                          |
|                     |        |              | ✓            | Laboratory Prepared Asphalt Mixture Specimens                                                                                            |
| T 37                | AASHTO |              |              | Sieve Analysis of Mineral Filler of Hot Mix Asphalt (HMA)                                                                                |
| R 47                | AASHTO |              |              | Reducing Samples of Asphalt Mixtures to Testing Size                                                                                     |
| R 47                | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO R 47, Reducing Samples of Asphalt Mixtures to<br>Testing Size                                                             |
| R 79                | AASHTO |              |              | Vacuum Drying Compacted Asphalt Specimens                                                                                                |
| R 79                | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO R 79, Vacuum Drying Compacted Asphalt Specimens                                                                           |
| R 96                | AASHTO |              |              | Installation, Operation, and Maintenance of Ignition Furnaces                                                                            |
| R 97                | AASHTO |              |              | Sampling Asphalt Mixtures                                                                                                                |
| R 97                | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO R 97, Sampling Asphalt Mixtures                                                                                           |
| T 166               | AASHTO |              |              | Bulk Specific Gravity (G <sub>mb</sub> ) of Compacted Asphalt Mixtures Using Saturated Surface-Dry Specimens                             |
| T 166               | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 166, Bulk Specific Gravity (G <sub>mb</sub> ) of Compacted Asphalt<br>Mixtures Using Saturated Surface-Dry Specimens    |
| T 209               | AASHTO |              |              | Theoretical Maximum Specific Gravity (G <sub>mm</sub> ) and Density of Asphalt Mixtures                                                  |
| T 209               | WAQTC  | ✓            | $\checkmark$ | FOP for AASHTO T 209, Theoretical Maximum Specific Gravity ( $G_{mm}$ ) and Density of Asphalt Mixtures                                  |
| T 269               | AASHTO |              |              | Percent Air Void in Compacted Dense and Open Asphalt Mixtures                                                                            |
| T 308               | AASHTO |              |              | Determining the Asphalt Binder Content of Asphalt Mixtures by the Ignition Method                                                        |
| Т 308               | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 308, Determining the Asphalt Binder Content of<br>Asphalt Mixtures by the Ignition Method                               |
| T 312               | AASHTO |              |              | Preparing and Determining the Density of Asphalt Mixture Specimens by<br>Means of the Superpave Gyratory Compactor                       |
| T 312               | WSDOT  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 312, Preparing and Determining the Density of Asphalt<br>Mixture Specimens by Means of the Superpave Gyratory Compactor |
| T 324               | AASHTO |              | $\checkmark$ | Hamburg Wheel-Track Testing of Compacted Asphalt Mixtures                                                                                |
| T 329               | AASHTO |              |              | Moisture Content of Asphalt Mixtures by Oven Method                                                                                      |
| T 329               | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 329, Moisture Content of Asphalt Mixtures by<br>Oven Method                                                             |
| T 331               | AASHTO |              |              | Bulk Specific Gravity ( $G_{mb}$ ) and Density of Compacted Asphalt Mixtures Using Automatic Vacuum Sealing Method                       |
| T 331               | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 331, Bulk Specific Gravity ( $G_{mb}$ ) and Density of Compacted Asphalt Mixtures Using Automatic Vacuum Sealing Method |
| T 355               | AASHTO |              |              | In-Place Density of Asphalt Mixtures by Nuclear Methods                                                                                  |
| T 355               | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 355, In-Place Density of Asphalt Mixtures by Nuclear Methods                                                            |
| T 716               | WSDOT  | $\checkmark$ | $\checkmark$ | Method of Random Sampling for Locations of Testing and Sampling Sites                                                                    |

|           | Asphalt Mixture |              |              |                                                                                                                     |  |  |
|-----------|-----------------|--------------|--------------|---------------------------------------------------------------------------------------------------------------------|--|--|
| Procedure | )               | Field        | In           |                                                                                                                     |  |  |
| Number    | Owner           | Use          | Manual       | Test Method                                                                                                         |  |  |
| T 720     | WSDOT           |              | ✓            | Method of Test for Thickness Measurement of Hot Mix Asphalt<br>(HMA) Cores                                          |  |  |
| SOP 729   | WSDOT           | ✓            | ✓            | Standard Operating Procedure for Determination of the Moving Average of Theoretical Maximum Density (TMD) for HMA   |  |  |
| SOP 730   | WSDOT           | ✓            | ✓            | Standard Operating Procedure for Correlation of Nuclear Gauge Densities<br>With Hot Mix Asphalt (HMA) Cores         |  |  |
| SOP 731   | WSDOT           | $\checkmark$ | $\checkmark$ | Standard Operating Procedure for Determining Volumetric Properties of Hot Mix Asphalt                               |  |  |
| SOP 732   | WSDOT           | ✓            | $\checkmark$ | Standard Operating Procedure for Volumetric Design for Hot-Mix Asphalt (HMA)                                        |  |  |
| SOP 733   | WSDOT           | $\checkmark$ | $\checkmark$ | Standard Operating Procedure for Determination of Pavement<br>Density Differentials Using the Nuclear Density Gauge |  |  |
| SOP 734   | WSDOT           | ✓            | $\checkmark$ | Standard Operating Procedure for Sampling Hot Mix Asphalt<br>After Compaction (Obtaining Cores)                     |  |  |
| SOP 735   | WSDOT           | $\checkmark$ | $\checkmark$ | Standard Operating Procedure for Longitudinal Joint Density                                                         |  |  |
| SOP 736   | WSDOT           |              | $\checkmark$ | In-Place Density of Bituminous Mixes Using Cores                                                                    |  |  |
| SOP 737   | WSDOT           |              | $\checkmark$ | Procedure for the Forensic Testing of HMA Field Cores                                                               |  |  |
| D 6931    | ASTM            |              | $\checkmark$ | Indirect Tensile (IDT) Strength of Asphalt Mixtures                                                                 |  |  |

|                     |            |              |              | Cement                                                                                                                                        |
|---------------------|------------|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Procedure<br>Number | e<br>Owner | Field<br>Use | In<br>Manua  | Test Method                                                                                                                                   |
| T 105               | AASHTO     |              |              | Chemical Analysis of Hydraulic Cement                                                                                                         |
| T 106               | AASHTO     |              |              | Compressive Strength of Hydraulic Cement Mortars (Using 50-mm or 2-in Cube Specimens)                                                         |
| T 106               | WSDOT      | $\checkmark$ | $\checkmark$ | FOP for AASHTO for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or (50-mm) Cube Specimens)                                   |
| T 107               | AASHTO     |              |              | Autoclave Expansion of Hydraulic Cement                                                                                                       |
| T 129               | AASHTO     |              |              | Amount of Water Required for Normal Consistency of Hydraulic<br>Cement Paste                                                                  |
| T 131               | AASHTO     |              |              | Time of Setting of Hydraulic Cement by Vicat Needle                                                                                           |
| T 133               | AASHTO     |              |              | Density of Hydraulic Cement                                                                                                                   |
| T 137               | AASHTO     |              |              | Air Content of Hydraulic Cement Mortar                                                                                                        |
| T 153               | AASHTO     |              |              | Fineness of Hydraulic Cement by Air Permeability Apparatus                                                                                    |
| T 162               | AASHTO     |              |              | Mechanical Mixing of Hydraulic Cement Pastes and Mortars of<br>Plastic Consistency                                                            |
| T 260               | AASHTO     |              |              | Sampling and Testing for Chloride Ion in Concrete and Concrete<br>Raw Materials                                                               |
| T 303               | AASHTO     |              |              | Accelerated Detection of Potentially Deleterious Expansion of Mortar Bars<br>Due to Alkali-Silica Reaction                                    |
| T 313               | WSDOT      |              | $\checkmark$ | Method of Test for Cement-Latex Compatibility                                                                                                 |
| T 314               | WSDOT      |              | $\checkmark$ | Method of Test for Photovolt Reflectance                                                                                                      |
| T 413               | WSDOT      |              | $\checkmark$ | Method of Test for Evaluating Waterproofing Effectiveness of Membrane and Membrane-Pavement Systems                                           |
| T 813               | WSDOT      | $\checkmark$ | $\checkmark$ | Field Method of Fabrication of 2 in (50 mm) Cube Specimens for Compressive Strength Testing of Grouts and Mortars                             |
| T 814               | WSDOT      |              | √            | Method of Test for Water Retention Efficiency of Liquid Membrane-<br>Forming Compounds and Impermeable Sheet Materials for<br>Curing Concrete |
| C 939               | WSDOT      | $\checkmark$ | $\checkmark$ | FOP for ASTM for Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method)                                                            |

|                  |        |       |              | Chemical                                                                                                                                                                       |
|------------------|--------|-------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Procedure        |        | Field | In           |                                                                                                                                                                                |
| Number           | Owner  | Use   | Manua        | Test Method                                                                                                                                                                    |
| LRFD<br>CONS     | AASHTO |       |              | Section 18, Bearing Devices                                                                                                                                                    |
| M 111            | AASHTO |       |              | Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products                                                                                                                  |
| M 251            | AASHTO |       |              | Plain and Laminated Elastomeric Bridge Bearings                                                                                                                                |
| Т 65             | AASHTO |       |              | Mass (Weight) of Coating on Iron and Steel Articles With Zinc or Zinc-Alloy Coatings                                                                                           |
| T 105/<br>C114   | AASHTO |       |              | Chemical Analysis of Hydraulic Cement                                                                                                                                          |
| T 260            | AASHTO |       |              | Sampling and Testing for Chloride Ion in Concrete and Concrete Raw Materials                                                                                                   |
| T 267            | AASHTO |       |              | Determination of Organic Content in Soils by Loss on Ignition                                                                                                                  |
| C 109            | ASTM   |       |              | Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens)                                                                                       |
| C 311            | ASTM   |       |              | Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland Cement Concrete                                                                                          |
| C 579            | ASTM   |       |              | Compressive Strength of Chemical-Resistant Mortars, Grouts, Monolithic Surfacings, and Polymer Concretes                                                                       |
| C 881            | ASTM   |       |              | Standard Specification for Epoxy-Resin-Base Bonding Systems for Concrete                                                                                                       |
| C 882            | ASTM   |       | $\checkmark$ | Bond Strength of Epoxy-Resin Systems Used With Concrete By Slant Shear                                                                                                         |
| D 638            | ASTM   |       |              | Tensile Properties of Plastics                                                                                                                                                 |
| D 695            | ASTM   |       |              | Compressive Properties of Rigid Plastics                                                                                                                                       |
| D 792            | ASTM   |       |              | Density and Specific Gravity (Relative Density) of Plastics by<br>Displacement                                                                                                 |
| D 1751           | ASTM   |       |              | Preformed Expansion Joint Filler for Concrete Paving and Structural<br>Construction (Nonextruding and Resilient Bituminous Types)                                              |
| D 2240           | ASTM   |       |              | Rubber Property-Durometer Hardness                                                                                                                                             |
| D 2628/<br>M 220 | ASTM   |       | $\checkmark$ | Preformed Polychloroprene Elastomeric Joint Seals for Concrete<br>Pavements                                                                                                    |
| D 5167           | ASTM   |       |              | Melting of Hot-Applied Joint and Crack Sealant and Filler for Evaluation                                                                                                       |
| D 5329           | ASTM   |       |              | Sealants and Fillers, Hot-Applied, for Joints and Cracks in Asphalt<br>Pavements and Portland Cement Concrete Pavements                                                        |
| D 6690           | ASTM   |       |              | Joint and Crack Sealants, Hot Applied, for Concrete and Asphalt<br>Pavements                                                                                                   |
| D 7091           | ASTM   |       | √            | Nondestructive Measurement of Dry Film Thickness of Nonmagnetic<br>Coatings Applied to Ferrous Metals and Nonmagnetic, Nonconductive<br>Coatings Applied to Non-Ferrous Metals |

|                     |        |              |              | Concrete                                                                                                    |
|---------------------|--------|--------------|--------------|-------------------------------------------------------------------------------------------------------------|
| Procedure<br>Number | Owner  | Field<br>Use | In<br>Manual | Test Method                                                                                                 |
| TM 2                | WAQTC  | $\checkmark$ | $\checkmark$ | WAQTC TM 2, Sampling Freshly Mixed Concrete                                                                 |
| T 22                | AASHTO |              |              | Compressive Strength of Cylindrical Concrete Specimens                                                      |
| T 22                | WSDOT  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 22, Compressive Strength of Cylindrical<br>Concrete Specimens                              |
| T 24                | AASHTO |              |              | Obtaining and Testing Drilled Cores and Sawed Beams of Concrete                                             |
| R 39                | AASHTO |              |              | Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory                           |
| R 100               | AASHTO |              |              | Method of Making and Curing Concrete Test Specimens in the Field                                            |
| R 100               | WAQTC  | ✓            | ✓            | FOP for AASHTO T 23, Method of Making and Curing Concrete Test<br>Specimens in the Field                    |
| T 106               | AASHTO |              |              | Compressive Strength of Hydraulic Cement Mortars (Using 50-mm or 2-in. Cube Specimens)                      |
| T 106               | WSDOT  | ✓            | ✓            | FOP for AASHTO for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or (50-mm) Cube Specimens) |
| T 119               | AASHTO |              |              | Slump of Hydraulic Cement Concrete                                                                          |
| T 119               | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 119, Slump of Hydraulic Cement Concrete                                                    |
| T 121               | AASHTO |              | _            | Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete                                     |
| T 121               | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 121, Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete               |
| C 140               | ASTM   |              |              | Sampling and Testing Concrete Masonry Units and Related Units                                               |
| T 141               | AASHTO |              |              | Sampling Freshly Mixed Concrete                                                                             |
| T 152               | AASHTO |              |              | Air Content of Freshly Mixed Concrete by the Pressure Method                                                |
| T 152               | WAQTC  | √            | $\checkmark$ | FOP for AASHTO T 152, Air Content of Freshly Mixed Concrete by the Pressure Method                          |
| T 196               | AASHTO |              | $\checkmark$ | Air Content of Freshly Mixed Concrete by the Volumetric Method (Checklist Only)                             |
| T 197               | AASHTO |              |              | Time of Setting of Concrete Mixtures by Penetration Resistance                                              |
| T 198               | AASHTO |              |              | Splitting Tensile Strength of Cylindrical Concrete Specimens                                                |
| T 231               | AASHTO |              | _            | Capping Cylindrical Concrete Specimens                                                                      |
| T 231               | WSDOT  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 231, Capping Cylindrical Concrete Specimens                                                |
| T 260               | AASHTO |              |              | Sampling and Testing for Chloride Ion in Concrete and Concrete<br>Raw Materials                             |
| T 277               | AASHTO |              |              | Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration                              |
| Т 309               | AASHTO |              |              | Temperature of Freshly Mixed Portland Cement Concrete                                                       |
| Т 309               | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 309, Temperature of Freshly Mixed Portland<br>Cement Concrete                              |
| Т 359               | AASHTO |              |              | Pavement Thickness by Magnetic Pulse Induction                                                              |
| C 457               | ASTM   | _            | _            | Microscopical Determination of Parameters of the Air-Void System in Hardened Concrete                       |
| C 495               | ASTM   |              |              | Compressive Strength of Lightweight Insulated Concrete                                                      |
| T 716               | WSDOT  | $\checkmark$ | $\checkmark$ | Method of Random Sampling for Locations of Testing and Sampling Sites                                       |
| T 802               | WSDOT  | ✓            | $\checkmark$ | Method of Test for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading)              |

|                     |       |              |              | Concrete                                                                                                                        |
|---------------------|-------|--------------|--------------|---------------------------------------------------------------------------------------------------------------------------------|
| Procedure<br>Number | Owner | Field<br>Use | In<br>Manual | Test Method                                                                                                                     |
| C 805               | ASTM  |              |              | Rebound Number of Hardened Concrete                                                                                             |
| C 805               | WSDOT | $\checkmark$ | $\checkmark$ | Rebound Hammer Determination of Compressive Strength of Hardened Concrete                                                       |
| T 808               | WSDOT | $\checkmark$ | $\checkmark$ | Method for Making Flexural Test Beams                                                                                           |
| T 813               | WSDOT | $\checkmark$ | $\checkmark$ | Field Method of Fabrication of 2 in (50 mm) Cube Specimens for Compressive Strength Testing of Grouts and Mortars               |
| T 818               | WSDOT |              | $\checkmark$ | Air Content of Freshly Mixed Self-Compacting Concrete by the Pressure Method                                                    |
| T 819               | WSDOT |              | $\checkmark$ | Making and Curing Self-Compacting Concrete Test Specimens in the Field                                                          |
| C 939               | ASTM  |              |              | Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method)                                                               |
| C 939               | WSDOT | $\checkmark$ | $\checkmark$ | FOP for ASTM C 939. Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method)                                           |
| C 1218              | ASTM  |              |              | Water-Soluble Chloride in Mortar and Concrete                                                                                   |
| C 1231              | ASTM  |              |              | Use of Unbonded Caps in Determination of Compressive Strength of Hardened Cylindrical Concrete Specimens                        |
| C 1231              | WSDOT | $\checkmark$ | $\checkmark$ | FOP for ASTM C1231, Use of Unbonded Caps in Determination of<br>Compressive Strength of Hardened Cylindrical Concrete Specimens |
| D 1429              | ASTM  |              |              | Specific Gravity of Water and Brine                                                                                             |
| C 1604              | ASTM  |              |              | Obtaining and Testing Drilled Cores of Shotcrete                                                                                |
| C 1611              | WSDOT | √            | ✓            | FOP for ASTM C 1611/C 1611M Standard Test Method for Slump Flow of Self-Consolidating Concrete                                  |
| C 1621              | WSDOT | $\checkmark$ | $\checkmark$ | FOP for ASTM C 1621/C 1621M Standard Test Method for Passing Ability of Self-Consolidating Concrete by J-Ring                   |

|                     |                       |              |              | Electrical                                                                                                                                                      |
|---------------------|-----------------------|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Procedure<br>Number | e<br>Owner            | Field<br>Use | In<br>Manual | Test Method                                                                                                                                                     |
| IP 78-16            | FHWA                  |              |              | Type 170 Signal Controller System Hardware Specification                                                                                                        |
| TEES                | Caltrans              |              |              | Caltrans Transportation Electrical Equipment Specifications                                                                                                     |
| PE-1                | NEMA                  |              |              | Standards Publication: Uninterruptible Power Systems (UPS) –<br>Specification and Performance Verification                                                      |
| TS-1                | NEMA                  |              |              | Standards Publication: Traffic Control Systems                                                                                                                  |
| TS-2                | NEMA                  |              |              | Standards Publication: Traffic Controller Assemblies with NTCIP<br>Requirements                                                                                 |
| T 421               | WSDOT                 |              | $\checkmark$ | Traffic Controller Inspection Procedure                                                                                                                         |
| T 422               | WSDOT                 |              | $\checkmark$ | Transient Voltage Test (Spike Test) Procedure (optional)                                                                                                        |
| T 423               | WSDOT                 |              | $\checkmark$ | Conflict Monitor Test Procedure                                                                                                                                 |
| T 424               | WSDOT                 |              | $\checkmark$ | Power Interruption Test Procedure                                                                                                                               |
| T 425               | WSDOT                 |              | $\checkmark$ | Environmental Chamber Test Procedure                                                                                                                            |
| T 427               | WSDOT                 |              | $\checkmark$ | Loop Amplifier Test Procedure                                                                                                                                   |
| T 428               | WSDOT                 |              | $\checkmark$ | Traffic Controller Compliance Inspection and Test Procedure                                                                                                     |
| SOP 429             | WSDOT                 |              | ✓            | Methods for Determining the Acceptance of Traffic Signal<br>Controller Assemblies                                                                               |
| T 430               | WSDOT                 |              | $\checkmark$ | Uninterruptible Power Supply (UPS) System Compliance Inspection and Test Procedure                                                                              |
| 1188                | IEEE                  |              |              | Standards Publication: Recommended Practice for Maintenance, Testing, and Replacement of Valve-Regulated Lead-Acid (VRLA) batteries for Stationary Applications |
| ATC 5301            | AASHTO<br>ITE<br>NEMA |              |              | Publication: Advanced Transportation Controller (ATC) Cabinet Standard                                                                                          |
| 62040-3             | IEC                   | -            |              | Standards Publication: Uninterruptible Power Systems (UPS) – Method for specifying the performance and test requirements                                        |

|                     |        |              |              | Geotechnical – Soils                                                                                                     |
|---------------------|--------|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------|
| Procedure<br>Number | Owner  | Field<br>Use | In<br>Manual | Test Method                                                                                                              |
| R 58                | AASHTO | 036          | Manual       | Dry Preparation of Disturbed Soil and Soil Aggregate Samples for Test                                                    |
| R 75                | AASHTO |              |              | Developing a Family of Curves                                                                                            |
| R 75                | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO R 75, Developing a Family of Curves                                                                       |
| T 88                | AASHTO | •            | •            | Particle Size Analysis of Soils                                                                                          |
| T 89                | AASHTO |              | ✓            | Determining the Liquid Limit of Soils (Checklist Only)                                                                   |
| T 90                | AASHTO |              |              | Determining the Plastic Limit and Plasticity Index of Soils (Checklist Only)                                             |
|                     |        |              | v            |                                                                                                                          |
| Т 99                | AASHTO |              |              | Moisture-Density Relations of Soils Using a 2.5 kg (5.5 lb) Rammer and a 305 mm (12 in.) Drop                            |
| Т 99                | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 99, Moisture-Density Relations of Soils Using a 2.5 kg (5.5 lb) Rammer and a 305 mm (12 in.) Drop       |
| T 100               | AASHTO |              |              | Specific Gravity of Soils                                                                                                |
| T 180               | AASHTO |              |              | Moisture-Density Relations of Soils Using a 4.54 kg (10 lb) Rammer and a 457 mm (18 in.) Drop                            |
| T 180               | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 180, Moisture-Density Relations of Soils Using a 4.54 kg (10 lb) Rammer and a 457 mm (18 in.) Drop      |
| T 208               | AASHTO |              |              | Unconfined Compressive Strength of Cohesive Soil                                                                         |
| T 215               | AASHTO |              |              | Permeability of Granular Soils (Constant Head)                                                                           |
| T 216               | AASHTO |              |              | One-Dimensional Consolidation Properties of Soils                                                                        |
| T 236               | AASHTO |              |              | Direct Shear Test of Soils Under Consolidated Drained Conditions                                                         |
| T 265               | AASHTO |              |              | Laboratory Determination of Moisture Content of Soils                                                                    |
| T 265               | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 265, Laboratory Determination of Moisture Content of Soils                                              |
| T 296               | AASHTO |              |              | Unconsolidated, Undrained Compressive Strength of Cohesive Soils in Triaxial Compression                                 |
| T 297               | AASHTO |              |              | Consolidated, Undrained Triaxial Compressive Test on Cohesive Soils Shear                                                |
| T 501               | WSDOT  |              | $\checkmark$ | Test Method to Determine Durability of Very Weak Rock                                                                    |
| D 2487              | ASTM   |              |              | Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)              |
| D 2488              | ASTM   |              |              | Standard Practice for Description and Identification of Soils (Visual-Manual Procedure)                                  |
| D 4186              | ASTM   |              |              | One-Dimensional Consolidation Properties of Saturated Cohesive Soils<br>Using Controlled-Strain Loading                  |
| D 4644              | ASTM   |              |              | Slake Durability of Shales and Similar Weak Rocks                                                                        |
| D 5084              | ASTM   |              |              | Measurement of Hydraulic Conductivity of Saturated Porous Materials<br>Using a Flexible Wall Permeameter                 |
| D 5311              | ASTM   |              |              | Load Controlled Cyclic Triaxial Strength of Soil                                                                         |
| D 5731              | ASTM   |              |              | Determination of the Point Load Strength Index of Rock and Application to Rock Strength Classifications                  |
| D 6467              | ASTM   |              |              | Torsional Ring Shear Test to Determine Drained Residual Shear Strength of Cohesive Soils                                 |
| D 6528              | ASTM   |              |              | Consolidated Undrained Direct Simple Shear Testing of Cohesive Soils                                                     |
| D 7012              | ASTM   |              | √            | Compressive Strength and Elastic Moduli of Intact Rock Core Specimens<br>under Verying States of Stress and Temperatures |

|                     |            |              |              | Geotextile and Steel                                                                                                                                     |
|---------------------|------------|--------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Procedure<br>Number | e<br>Owner | Field<br>Use | In<br>Manual | Test Method                                                                                                                                              |
| E 18                | ASTM       |              |              | Rockwell Hardness of Metallic Materials                                                                                                                  |
| A 143               | ASTM       |              |              | Standard Practice for Safeguarding Against Embrittlement of<br>Hot-Dip Galvanized Structural Steel Products and Procedure for<br>Detecting Embrittlement |
| T 244               | AASHTO     |              |              | Mechanical Testing of Steel Products                                                                                                                     |
| A 370               | ASTM       |              |              | Definitions for Mechanical Testing of Steel Products                                                                                                     |
| F 606               | ASTM       |              |              | Determining the Mechanical Properties of Externally and Internally Threaded Fasteners, Washers, Direct Tension Indicators, and Rivets                    |
| SOP 914             | WSDOT      | $\checkmark$ | $\checkmark$ | Practice for Sampling of Geosynthetic Material for Testing                                                                                               |
| T 915               | WSDOT      |              | $\checkmark$ | Practice for Conditioning of Geotextiles for Testing                                                                                                     |
| T 923               | WSDOT      |              | $\checkmark$ | Thickness Measurement of Geotextiles                                                                                                                     |
| T 925               | WSDOT      |              | $\checkmark$ | Standard Practice for Determination of Long-Term Strength for<br>Geosynthetic Reinforcement                                                              |
| T 926               | WSDOT      |              | $\checkmark$ | Geogrid Brittleness Test                                                                                                                                 |
| D 1683              | ASTM       |              |              | Failure in Sewen Seams of Woven Fabrics                                                                                                                  |
| D 4354              | ASTM       |              | $\checkmark$ | Standard Practice for Sampling of Geosynthetics and Rolled Erosion<br>Control Products (RECPs) for Testing                                               |
| D 4355              | ASTM       |              |              | Deterioration of Geotextiles From Exposure to Light, Moisture and Heat in a Xenon-Arc-Type Apparatus                                                     |
| D 4491              | ASTM       |              |              | Water Permeability of Geotextiles by permittivity                                                                                                        |
| D 4533              | ASTM       |              |              | Trapezoid Tearing Strength of Geotextiles                                                                                                                |
| D 4595              | ASTM       |              |              | Tensile Properties of Geotextiles by the Wide-Width Strip Method                                                                                         |
| D 4632              | ASTM       |              |              | Grab Breaking Load and Elongation of Geotextiles                                                                                                         |
| D 4751              | ASTM       |              |              | Determining Apparent Opening Size of a Geotextiles                                                                                                       |
| D 6241              | ASTM       |              |              | Static Puncture Strength of Geotextiles and Geotextile-Related Products<br>Using a 50-mm Probe                                                           |

| Paint               |       |              |              |                                                                                                                               |  |
|---------------------|-------|--------------|--------------|-------------------------------------------------------------------------------------------------------------------------------|--|
| Procedure<br>Number | Owner | Field<br>Use | In<br>Manual | Test Method                                                                                                                   |  |
| D 523               | ASTM  |              |              | Specular Gloss                                                                                                                |  |
| D 823               | ASTM  |              |              | Producing Films of Uniform Thickness of Paint, Coatings and Related Products on Test Panels                                   |  |
| D 1475              | ASTM  |              |              | Density of Liquid Coatings, Inks, and Related Products                                                                        |  |
| D 2244              | ASTM  |              |              | Standard Practice for Calculation of Color Tolerances and Color<br>Differences From Instrumentally Measured Color Coordinates |  |
| D 2369              | ASTM  |              |              | Volatile Content of Coatings                                                                                                  |  |
| D 2621              | ASTM  |              |              | Infrared Identification of Vehicle Solids From Solvent-Reducible Paints                                                       |  |
| D 2697              | ASTM  |              |              | Volume Nonvolatile Matter in Clear or Pigmented Coatings                                                                      |  |
| D 2698              | ASTM  |              |              | Determination of the Pigment Content of Solvent-Reducible Paints by High-Speed Centrifuging                                   |  |

|                     |            |              |              | Pavement Soils                                                                                                               |
|---------------------|------------|--------------|--------------|------------------------------------------------------------------------------------------------------------------------------|
| Procedure<br>Number | e<br>Owner | Field<br>Use | In<br>Manual | Test Method                                                                                                                  |
| TM 15               | WAQTC      |              | $\checkmark$ | Laboratory Theoretical Maximum Dry Density of Granular Soil and Soil/<br>Aggregate                                           |
| T 242               | AASHTO     |              |              | Frictional Properties of Paved Surfaces Using a Full-Scale Tire                                                              |
| T 272               | AASHTO     |              |              | One-Point Method for Determining Maximum Dry Density and Optimum Moisture                                                    |
| T 272               | WAQTC      | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 272, One-Point Method for Determining Maximum Dry Density and Optimum Moisture                              |
| T 307               | AASHTO     |              | $\checkmark$ | Determining the Resilient Modulus of Soils and Aggregate Materials                                                           |
| T 310               | AASHTO     |              |              | In-Place Density and Moisture Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)                          |
| T 310               | WAQTC      | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 310, In-Place Density and Moisture Content of Soil<br>and Soil-Aggregate by Nuclear Methods (Shallow Depth) |
| T 610               | WSDOT      |              | $\checkmark$ | Method of Test for the Capillary Rise of Soils                                                                               |
| SOP 615             | WSDOT      | $\checkmark$ | $\checkmark$ | Determination of the % Compaction for Embankment & Untreated<br>Surfacing Materials Using the Nuclear Moisture-Density Gauge |
| SOP 738             | WSDOT      | $\checkmark$ | $\checkmark$ | Establishing Maximum Field Density for Recycled Concrete Aggregates by Test Point Evaluation                                 |
| T 807               | WSDOT      | $\checkmark$ | $\checkmark$ | Method of Operation of California Profilograph and Evaluation of Profiles                                                    |
| D 4694              | ASTM       |              |              | Deflections with a Falling-Weight-Type Impulse Load Device                                                                   |

|                     |       |              |              | Standard Practice                                                                                                                                 |
|---------------------|-------|--------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Procedure<br>Number | Owner | Field<br>Use | In<br>Manual | Test Method                                                                                                                                       |
| QC 1                | WSDOT |              | $\checkmark$ | Standard Practice for Cement Producers/Suppliers That Certify Portland Cement and Blended Hydraulic Cement                                        |
| QC 2                | WSDOT |              | $\checkmark$ | Standard Practice for Asphalt Suppliers That Certify Performance Graded and Emulsified Asphalts                                                   |
| QC 3                | WSDOT |              | $\checkmark$ | Quality System Laboratory Review                                                                                                                  |
| QC 4                | WSDOT |              | $\checkmark$ | Standard Practice for Fly Ash Producers/Importers/Distributors That Certify Fly Ash                                                               |
| QC 5                | WSDOT |              | $\checkmark$ | Standard Practice for Ground Granulated Blast-Furnace Slag Producers/<br>Importers/Distributors That Certify Ground Granulated Blast-Furnace Slag |
| QC 6                | WSDOT |              | $\checkmark$ | Annual Prestressed Plant Review and Approval Process                                                                                              |
| QC 7                | WSDOT |              | $\checkmark$ | Annual Precast Plant Review and Approval Process                                                                                                  |
| QC 8                | WSDOT |              | $\checkmark$ | Standard Practice for Development, Submittal and Approval of Hot Mix<br>Asphalt Mix Designs                                                       |
| QC 9                | WSDOT |              | $\checkmark$ | Standard Practice for Approval of Recycled Materials Facilities of WSDOT Recycled Concrete and Returned Concrete                                  |
| QC 10               | WSDOT |              | $\checkmark$ | Standard Practice for Approval of Recycled Materials Facilities from<br>Stockpiles of Unknown Sources                                             |
| QC 11               | WSDOT |              | $\checkmark$ | Vacant                                                                                                                                            |
| QC 12               | WSDOT |              | $\checkmark$ | Standard Practice for Evaluation of Aggregate Sources                                                                                             |

|                     |            |              |              | Numerical Order                                                                                                                                   |
|---------------------|------------|--------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Procedure<br>Number | e<br>Owner | Field<br>Use | In<br>Manual | Test Method                                                                                                                                       |
| LRFD<br>CONS        | AASHTO     |              |              | Section 18, Bearing Devices                                                                                                                       |
| QC 1                | WSDOT      |              | $\checkmark$ | Standard Practice for Cement Producers/Suppliers That Certify Portland<br>Cement and Blended Hydraulic Cement                                     |
| QC 2                | WSDOT      |              | $\checkmark$ | Standard Practice for Asphalt Suppliers That Certify Performance Graded and Emulsified Asphalts                                                   |
| QC 3                | WSDOT      |              | $\checkmark$ | Quality System Laboratory Review                                                                                                                  |
| QC 4                | WSDOT      |              | $\checkmark$ | Standard Practice for Fly Ash Producers/Importers/Distributors That Certify Fly Ash                                                               |
| QC 5                | WSDOT      |              | $\checkmark$ | Standard Practice for Ground Granulated Blast-Furnace Slag Producers/<br>Importers/Distributors That Certify Ground Granulated Blast-Furnace Slag |
| QC 6                | WSDOT      |              | $\checkmark$ | Annual Prestressed Plant Review and Approval Process                                                                                              |
| QC 7                | WSDOT      |              | $\checkmark$ | Annual Precast Plant Review and Approval Process                                                                                                  |
| QC 8                | WSDOT      |              | ✓            | Standard Practice for Development, Submittal and Approval of Hot Mix<br>Asphalt Mix Designs                                                       |
| QC 9                | WSDOT      |              | $\checkmark$ | Standard Practice for Approval of Recycled Materials Facilities of WSDOT<br>Recycled Concrete and Returned Concrete                               |
| QC 10               | WSDOT      |              | $\checkmark$ | Standard Practice for Approval of Recycled Materials Facilities from Stockpiles of Unknown Sources                                                |
| QC 11               | WSDOT      |              | $\checkmark$ | Vacant                                                                                                                                            |
| QC 12               | WSDOT      |              | $\checkmark$ | Standard Practice for Evaluation of Aggregate Sources                                                                                             |
| TEES                | Caltrans   |              |              | Caltrans Transportation Electrical Equipment Specifications                                                                                       |
| PE-1                | NEMA       |              |              | Standards Publication: Uninterruptible Power Systems (UPS) –<br>Specification and Performance Verification                                        |
| TS-1                | NEMA       |              |              | Standards Publication: Traffic Control Systems                                                                                                    |
| TS-2                | NEMA       |              |              | Standards Publication: Traffic Controller Assemblies with NTCIP<br>Requirements                                                                   |
| TM 2                | WAQTC      | $\checkmark$ | $\checkmark$ | WAQTC TM 2, Sampling Freshly Mixed Concrete                                                                                                       |
| T 11                | AASHTO     |              |              | Materials Finer Than 0.075 mm (No. 200) Sieve in Mineral Aggregates by Washing                                                                    |
| TM 14               | WAQTC      |              | $\checkmark$ | Laboratory Prepared Asphalt Mixture Specimens                                                                                                     |
| TM 15               | WAQTC      |              | $\checkmark$ | Laboratory Theoretical Maximum Dry Density of Granular Soil and Soil/<br>Aggregate                                                                |
| E 18                | ASTM       |              |              | Rockwell Hardness of Metallic Materials                                                                                                           |
| T 19                | AASHTO     | ✓            | ✓            | Bulk Density ("Unit Weight") and Voids in Aggregate (Rodding Procedure Only) (Checklist Only)                                                     |
| T 21                | AASHTO     |              |              | Organic Impurities in Fine Aggregates for Concrete                                                                                                |
| T 22                | AASHTO     |              |              | Compressive Strength of Cylindrical Concrete Specimens                                                                                            |
| T 22                | WSDOT      | ✓            | ✓            | FOP for AASHTO T 22, Compressive Strength of Cylindrical Concrete Specimens                                                                       |
| T 24                | AASHTO     |              |              | Obtaining and Testing Drilled Cores and Sawed Beams of Concrete                                                                                   |
|                     |            |              |              |                                                                                                                                                   |

|           |        |              |              | Numerical Order                                                                               |
|-----------|--------|--------------|--------------|-----------------------------------------------------------------------------------------------|
| Procedure |        | Field        | In           |                                                                                               |
| Number    | Owner  | Use          | Manual       |                                                                                               |
| T 27      | AASHTO |              |              | Sieve Analysis of Fine and Coarse Aggregates                                                  |
| T 27_T 11 | WAQIC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 27_T 11, Sieve Analysis of Fine and<br>Coarse Aggregates                     |
| R 28      | AASHTO |              |              | Standard Practice for Accelerated Aging of Asphalt Binder Using a<br>Pressurized Aging Vessel |
| R 29      | AASHTO |              |              | Standard Practice for Grading or Verifying the Performance Grade (PG) of an Asphalt Binder    |
| R 30      | AASHTO |              |              | Standard Practice for Mixture Conditioning of Hot Mix Asphalt (HMA)                           |
| Т 30      | AASHTO |              |              | Mechanical Analysis of Extracted Aggregate                                                    |
| Т 30      | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 30, Mechanical Analysis of Extracted Aggregate                               |
| T 37      | AASHTO |              |              | Sieve Analysis of Mineral Filler for Hot Mix Asphalt (HMA)                                    |
| R 39      | AASHTO |              |              | Standard Practice for Making and curing Concrete Test Specimens in the Laboratory             |
| T 44      | AASHTO | -            |              | Solubility of Bituminous Materials                                                            |
| R 47      | AASHTO |              |              | Reducing Samples of Asphalt Mixtures to Testing Size                                          |
| R 47      | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO R 47, Reducing Samples of Asphalt Mixtures to Testing Size                     |
| T 48      | AASHTO |              |              | Flash and Fire Points by Cleveland Open Cup                                                   |
| T 49      | AASHTO |              |              | Penetration of Bituminous Materials                                                           |
| T 50      | AASHTO |              |              | Float Test for Bituminous Materials                                                           |
| T 51      | AASHTO |              |              | Ductility of Asphalt Materials                                                                |
| T 53      | AASHTO |              |              | Softening Point of Bitumen (Ring-and-Ball Apparatus)                                          |
| R 58      | AASHTO |              |              | Dry Preparation of Disturbed Soil and Soil Aggregate Samples for Test                         |
| T 59      | AASHTO |              |              | Emulsified Asphalts                                                                           |
| T 65      | AASHTO |              |              | Mass (Weight) of Coating on Iron and Steel Articles With Zinc or Zinc-Alloy Coatings          |
| R 66      | AASHTO |              |              | Sampling Asphalt Materials                                                                    |
| R 66      | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO R 66, Sampling Asphalt Materials                                               |
| E 70      | ASTM   |              |              | pH of Aqueous Solutions With the Glass Electrode                                              |
| T 72      | AASHTO |              |              | Saybolt Viscosity                                                                             |
| R 75      | AASHTO |              |              | Developing a Family of Curves                                                                 |
| R 75      | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO R 75, Developing a Family of Curves                                            |
| R 76      | AASHTO |              |              | Reducing Samples of Aggregate to Testing Size                                                 |
| R 76      | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO R 76, Reducing Samples of Aggregate to Testing Size                            |
| IP 78-16  | FHWA   |              |              | Type 170 Signal Controller System Hardware Specification                                      |
| R 79      | AASHTO |              |              | Vacuum Drying Compacted Asphalt Specimens                                                     |
| R 79      | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO R 79, Vacuum Drying Compacted Asphalt Specimens                                |
| T 84      | AASHTO |              |              | Specific Gravity and Absorption of Fine Aggregates                                            |
| Т 85      | AASHTO |              |              | Specific Gravity and Absorption of Coarse Aggregates                                          |
| T 85      | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 85, Specific Gravity and Absorption of<br>Coarse Aggregate                   |

|                     |            |              |              | Numerical Order                                                                                                    |
|---------------------|------------|--------------|--------------|--------------------------------------------------------------------------------------------------------------------|
| Procedure<br>Number | e<br>Owner | Field<br>Use | In<br>Manual | Test Method                                                                                                        |
| T 88                | AASHTO     | 036          | Mariua       | Particle Size Analysis of Soils                                                                                    |
| T 89                | AASHTO     |              | $\checkmark$ | Determining the Liquid Limit of Soils (Checklist Only)                                                             |
| R 90                | AASHTO     |              | -            | Sampling Aggregate Products                                                                                        |
| R 90                | WAQTC      | $\checkmark$ | $\checkmark$ | FOP for AASHTO R 90, Sampling Aggregate Products                                                                   |
| Т 90                | AASHTO     |              | $\checkmark$ | Determining the Plastic Limit and Plasticity Index of Soils (Checklist Only)                                       |
| R 96                | AASHTO     |              |              | Installation, Operation, and Maintenance of Ignition Furnaces                                                      |
| T 96                | AASHTO     |              |              | Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion<br>and Impact in the Los Angeles Machine      |
| R 97                | AASHTO     |              |              | Sampling Asphalt Mixtures                                                                                          |
| R 97                | WAQTC      | $\checkmark$ | $\checkmark$ | FOP for AASHTO R 97, Sampling Asphalt Mixtures                                                                     |
| T 99                | AASHTO     |              |              | Moisture-Density Relations of Soils Using a 2.5 kg (5.5 lb) Rammer and a 305 mm (12 in.) Drop                      |
| Т 99                | WAQTC      | ✓            | $\checkmark$ | FOP for AASHTO T 99, Moisture-Density Relations of Soils Using a 2.5 kg (5.5 lb) Rammer and a 305 mm (12 in.) Drop |
| R 100               | AASHTO     |              |              | Method of Making and Curing Concrete Test Specimens in the Field                                                   |
| R 100               | WAQTC      | ✓            | ✓            | FOP for AASHTO T 23, Method of Making and Curing Concrete Test<br>Specimens in the Field                           |
| T 100               | AASHTO     |              |              | Specific Gravity of Soils                                                                                          |
| T 105               | AASHTO     |              |              | Chemical Analysis of Hydraulic Cement                                                                              |
| T 106               | AASHTO     |              |              | Compressive Strength of Hydraulic Cement Mortars (Using 50-mm or 2-in Cube Specimens)                              |
| T 106               | WSDOT      | ✓            | √            | FOP for AASHTO for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or (50-mm) Cube Specimens)        |
| T 107               | AASHTO     |              |              | Autoclave Expansion of Hydraulic Cement                                                                            |
| M 111               | AASHTO     |              |              | Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products                                                      |
| T 112               | AASHTO     |              | $\checkmark$ | Clay Lumps and Friable Particles in Aggregate                                                                      |
| T 113               | WSDOT      |              | $\checkmark$ | Method of Test for Determination of Degradation Value                                                              |
| T 119               | AASHTO     |              |              | Slump of Hydraulic Cement Concrete                                                                                 |
| T 119               | WAQTC      | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 119, Slump of Hydraulic Cement Concrete                                                           |
| T 121               | AASHTO     |              |              | Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete                                            |
| T 121               | WAQTC      | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 121, Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete                      |
| T 123               | WSDOT      | $\checkmark$ | $\checkmark$ | Method of Test for Bark Mulch                                                                                      |
| T 125               | WSDOT      |              | $\checkmark$ | Determination of Fiber Length Percentages in Wood Strand Mulch                                                     |
| T 126               | WSDOT      |              | $\checkmark$ | Determination of Fiber Length Percentages in Hydraulically-Applied<br>Erosion Control Products                     |
| T 127               | WSDOT      |              | $\checkmark$ | Preparation of Leachate Sample for Testing Toxicity of HECP Effluents                                              |
| SOP 128             | WSDOT      | $\checkmark$ | $\checkmark$ | Sampling for Aggregate Source Approval                                                                             |
| T 129               | AASHTO     |              |              | Amount of Water Required for Normal Consistency of Hydraulic Cement Paste                                          |

|                     |        |              |              | Numerical Order                                                                                                                                          |
|---------------------|--------|--------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Procedure<br>Number | Owner  | Field<br>Use | In<br>Manual | Test Method                                                                                                                                              |
| T 131               | AASHTO |              |              | Time of Setting of Hydraulic Cement by Vicat Needle                                                                                                      |
| T 133               | AASHTO |              |              | Density of Hydraulic Cement                                                                                                                              |
| T 137               | AASHTO |              |              | Air Content of Hydraulic Cement Mortar                                                                                                                   |
| C 140               | ASTM   |              |              | Sampling and Testing Concrete Masonry Units and Related Units                                                                                            |
| T 141               | AASHTO |              |              | Sampling Freshly Mixed Concrete                                                                                                                          |
| A 143               | ASTM   |              |              | Standard Practice for Safeguarding Against Embrittlement of<br>Hot-Dip Galvanized Structural Steel Products and Procedure for<br>Detecting Embrittlement |
| T 152               | AASHTO |              |              | Air Content of Freshly Mixed Concrete by the Pressure Method                                                                                             |
| T 152               | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 152, Air Content of Freshly Mixed Concrete by the Pressure Method                                                                       |
| T 153               | AASHTO |              |              | Fineness of Hydraulic Cement by Air Permeability Apparatus                                                                                               |
| T 162               | AASHTO |              |              | Mechanical Mixing of Hydraulic Cement Pastes and Mortars of<br>Plastic Consistency                                                                       |
| T 166               | AASHTO |              |              | Bulk Specific Gravity (G <sub>mb</sub> ) of Compacted Asphalt Mixtures Using Saturated Surface-Dry Specimens                                             |
| T 166               | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 166, for Bulk Specific Gravity of Compacted Asphalt<br>Mixtures Using Saturated Surface-Dry Specimens                                   |
| T 176               | AASHTO |              |              | Plastic Fines in Graded Aggregates and Soils by the Use of the Sand Equivalent Test                                                                      |
| T 176               | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 176, Plastic Fines in Graded Aggregates and Soils by the Use of the Sand Equivalent Test                                                |
| T 180               | AASHTO |              |              | Moisture-Density Relations of Soils Using a 4.54 kg (10 lb) Rammer<br>and a 457 mm (18 in.) Drop                                                         |
| T 180               | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 180, Moisture-Density Relations of Soils Using a 4.54 kg (10 lb) Rammer and a 457 mm (18 in.) Drop                                      |
| T 196               | AASHTO |              | $\checkmark$ | Air Content of Freshly Mixed Concrete by the (Volumetric Method) (Checklist Only)                                                                        |
| T 197               | AASHTO |              |              | Time of Setting of Concrete Mixtures by Penetration Resistance                                                                                           |
| T 198               | AASHTO |              |              | Splitting Tensile Strength of Cylindrical Concrete Specimens                                                                                             |
| T 208               | AASHTO |              |              | Unconfined Compressive Strength of Cohesive Soil                                                                                                         |
| T 209               | AASHTO |              |              | Theoretical Maximum Specific Gravity ( $G_{mm}$ ) and Density of Asphalt Mixtures                                                                        |
| T 209               | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 209, Theoretical Maximum Specific Gravity ( $G_{\mbox{\tiny mm}}$ ) and Density of Asphalt Mixtures                                     |
| T 215               | AASHTO | -            |              | Permeability of Granular Soils (Constant Head)                                                                                                           |
| T 216               | AASHTO |              |              | One-Dimensional Consolidation Properties of Soils                                                                                                        |
| T 228               | AASHTO |              |              | Specific Gravity of Semi-Solid Asphalt Materials                                                                                                         |
| T 231               | AASHTO |              |              | Capping Cylindrical Concrete Specimens                                                                                                                   |
| T 231               | WSDOT  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 231, Capping Cylindrical Concrete Specimens                                                                                             |
| T 236               | AASHTO |              |              | Direct Shear test of Soils Under Consolidated Drained Conditions                                                                                         |
| T 240               | AASHTO |              |              | Effect of Heat and Air on a Moving Film of Asphalt Binder (Rolling Thin-<br>Film Oven Test)                                                              |
| T 242               | AASHTO |              |              | Frictional Properties of Paved Surfaces Using a Full-Scale Tire                                                                                          |

|                     |        |              |              | Numerical Order                                                                                                              |
|---------------------|--------|--------------|--------------|------------------------------------------------------------------------------------------------------------------------------|
| Procedure<br>Number | Owner  | Field<br>Use | In<br>Manual | Test Method                                                                                                                  |
| T 244               | AASHTO |              |              | Mechanical Testing of Steel Products                                                                                         |
| M 251               | AASHTO |              |              | Plain and Laminated Elastomeric Bridge Bearings                                                                              |
| T 255               | AASHTO |              |              | Total Evaporable Moisture Content of Aggregate by Drying                                                                     |
| T 255               | WAQTC  | ✓            | $\checkmark$ | FOP for AASHTO T 255, Total Evaporable Moisture Content of Aggregate by Drying                                               |
| T 260               | AASHTO |              |              | Sampling and Testing for Chloride Ion in Concrete and Concrete<br>Raw Materials                                              |
| T 265               | AASHTO |              |              | Laboratory Determination of Moisture Content of Soils                                                                        |
| T 265               | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 265, Laboratory Determination of Moisture Content of Soils                                                  |
| T 267               | AASHTO |              |              | Determination of Organic Content in Soils by Loss on Ignition                                                                |
| T 269               | AASHTO |              |              | Percent Air Void in Compacted Dense and Open Asphalt Mixtures                                                                |
| T 272               | AASHTO |              |              | One-Point Method for Determining Maximum Dry Density and Optimum Moisture                                                    |
| T 272               | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 272, One-Point Method for Determining Maximum Dry Density and Optimum Moisture                              |
| T 277               | AASHTO |              |              | Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration                                               |
| T 288               | AASHTO |              | $\checkmark$ | Determining Minimum Laboratory Soil Resistivity (Checklist Only)                                                             |
| T 289               | AASHTO |              |              | Determining pH of Soil for Use in Corrosion Testing                                                                          |
| T 296               | AASHTO |              |              | Unconsolidated, Undrained Compressive Strength of Cohesive Soils in Triaxial Compression                                     |
| T 297               | AASHTO |              |              | Consolidated, Undrained Triaxial Compressive Test on Cohesive Soils Shear                                                    |
| T 301               | AASHTO |              |              | Elastic Recovery Test of Asphalt Materials by Means of a Ductilometer                                                        |
| Т 303               | AASHTO |              |              | Accelerated Detection of Potentially Deleterious Expansion of Mortar Bars<br>Due to Alkali-Silica Reaction                   |
| T 304               | AASHTO |              |              | Uncompacted Void Content of Fine Aggregate                                                                                   |
| T 304               | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 304, Uncompacted Void Content of Fine Aggregate                                                             |
| T 307               | AASHTO |              | $\checkmark$ | Determining the Resilient Modulus of Soils and Aggregate Materials                                                           |
| T 308               | AASHTO |              |              | Determining the Asphalt Binder Content of Asphalt Mixtures by the Ignition Method                                            |
| T 308               | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 308, Determining the Asphalt Binder Content of<br>Asphalt Mixtures by the Ignition Method                   |
| T 309               | AASHTO |              |              | Temperature of Freshly Mixed Hydraulic Cement Concrete                                                                       |
| T 309               | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T309, Temperature of Freshly Mixed Portland Cement<br>Concrete                                                |
| T 310               | AASHTO |              |              | In-Place Density and Moisture Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)                          |
| T 310               | WAQTC  | ~            | √            | FOP for AASHTO T 310, In-Place Density and Moisture Content of Soil<br>and Soil-Aggregate by Nuclear Methods (Shallow Depth) |
| C 311               | ASTM   |              |              | Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland Cement Concrete                                        |

| Numerical Order    |        |              |              |                                                                                                                                                |  |
|--------------------|--------|--------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Procedure Field In |        |              |              |                                                                                                                                                |  |
| Number             | Owner  | Use          | Manual       |                                                                                                                                                |  |
| T 312              | AASHTO |              |              | Preparing and Determining the Density of Asphalt Mixture Specimens by<br>Means of the Superpave Gyratory Compactor                             |  |
| T 312              | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 312, Preparing and Determining the Density of Asphalt<br>Mixture Specimens by Means of the Superpave Gyratory Compactor       |  |
| T 313              | AASHTO |              |              | Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR)                                              |  |
| T 313              | WSDOT  |              | $\checkmark$ | Method of Test for Cement-Latex Compatibility                                                                                                  |  |
| T 314              | WSDOT  |              | $\checkmark$ | Method of Test for Photovolt Reflectance                                                                                                       |  |
| T 315              | AASHTO |              |              | Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR)                                                 |  |
| T 316              | AASHTO |              |              | Viscosity Determination of Asphalt Binder Using Rotational Viscometer                                                                          |  |
| SOP 318            | WSDOT  |              | $\checkmark$ | Standard Operating Procedure for Melting of Flexible Bituminous<br>Pavement Marker Adhesive for Evaluation                                     |  |
| T 324              | AASHTO |              | $\checkmark$ | Hamburg Wheel-Track Testing of Compacted Asphalt Mixtures                                                                                      |  |
| T 329              | AASHTO |              |              | Moisture Content of Asphalt Mixtures by Oven Method                                                                                            |  |
| T 329              | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 329, Moisture Content of Asphalt Mixture by Oven Method                                                                       |  |
| T 331              | AASHTO |              |              | Bulk Specific Gravity ( $G_{mb}$ ) and Density of Compacted Asphalt Mixtures Using Automatic Vacuum Sealing Method                             |  |
| T 331              | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 331, Bulk Specific Gravity (G <sub>mb</sub> ) and Density of Compacted Asphalt Mixtures Using Automatic Vacuum Sealing Method |  |
| T 335              | AASHTO |              |              | Determining the Percentage of Fracture in Coarse Aggregate                                                                                     |  |
| T 335              | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 335, Determining the Percentage of Fracture in Coarse Aggregate                                                               |  |
| T 350              | AASHTO |              |              | Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Reheometer (DSR)                                            |  |
| T 355              | AASHTO |              |              | In-Place Density of Asphalt Mixtures by Nuclear Methods                                                                                        |  |
| Т 355              | WAQTC  | $\checkmark$ | $\checkmark$ | FOP for AASHTO T 355, In-Place Density of Asphalt Mixtures by Nuclear Methods                                                                  |  |
| T 359              | AASHTO |              |              | Pavement Thickness by Magnetic Pulse Induction                                                                                                 |  |
| A 370              | ASTM   |              |              | Definitions for Mechanical Testing of Steel Products                                                                                           |  |
| T 413              | WSDOT  | $\checkmark$ | $\checkmark$ | Method of Test for Evaluating Waterproofing Efectiveness of Membrane and Membrane-Pavement Systems                                             |  |
| T 417              | WSDOT  |              | $\checkmark$ | Method of Test for Determining Minimum Resistivily and pH of Soil and Water                                                                    |  |
| T 421              | WSDOT  |              | $\checkmark$ | Traffic Controller Inspection Procedure                                                                                                        |  |
| T 422              | WSDOT  |              | $\checkmark$ | Transient Voltage Test (Spike Test) Procedure (optional)                                                                                       |  |
| T 423              | WSDOT  |              | $\checkmark$ | Conflict Monitor Test Procedure                                                                                                                |  |
| T 424              | WSDOT  |              | $\checkmark$ | Power Interruption Test Procedure                                                                                                              |  |
| T 425              | WSDOT  |              | $\checkmark$ | Environmental Chamber Test Procedure                                                                                                           |  |
| T 426              | WSDOT  |              | $\checkmark$ | Pull-Off Test for Hot Melt Traffic Button Adhesive                                                                                             |  |
| T 427              | WSDOT  |              | $\checkmark$ | Loop Amplifier Test Procedure                                                                                                                  |  |

| Numerical Order |                |              |              |                                                                                                                                          |  |
|-----------------|----------------|--------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| Procedure       |                | Field        | In<br>Manual | Toot Method                                                                                                                              |  |
| Number<br>T 428 | Owner<br>WSDOT | Use          |              | Test Method Traffic Controller Compliance Inspection and Test Procedure                                                                  |  |
|                 |                |              | ✓            |                                                                                                                                          |  |
| SOP 429         | WSDOT          |              | ✓            | Methods for Determining the Acceptance of Traffic Signal<br>Controller Assemblies                                                        |  |
| T 430           | WSDOT          |              | $\checkmark$ | Uninterruptible Power Supply (UPS) System Compliance Inspection and Test Procedure                                                       |  |
| T 432           | WSDOT          |              | $\checkmark$ | Flexibility Test for Hot-Melt Adhesives                                                                                                  |  |
| C 457           | ASTM           |              |              | Microscopical Determination of Parameters of the Air-Void System in Hardened Concrete                                                    |  |
| C 495           | ASTM           |              |              | Compressive Strength of Lightweight Insulated Concrete                                                                                   |  |
| T 501           | WSDOT          |              | $\checkmark$ | Test Method to Determine Durability of Very Weak Rock                                                                                    |  |
| D 523           | ASTM           |              |              | Specular Gloss                                                                                                                           |  |
| C 579           | ASTM           |              |              | Compressive Strength of Chemical-Resistant Mortars, Grouts, Monolithic Surfacings, and Polymer Concretes                                 |  |
| F 606           | ASTM           |              |              | Determining the Mechanical Properties of Externally and Internally<br>Threaded Fasteners, Washers, Direct Tension Indicators, and Rivets |  |
| T 610           | WSDOT          |              | $\checkmark$ | Method of Test for the Capillary Rise of Soils                                                                                           |  |
| SOP 615         | WSDOT          | ✓            | ✓            | Determination of the % Compaction for Embankment and Untreated<br>Surfacing Materials Using the Nuclear Moisture-Density Gauge           |  |
| D 638           | ASTM           |              | -            | Tensile Properties of Plastics                                                                                                           |  |
| D 695           | ASTM           |              |              | Compressive Properties of Rigid Plastics                                                                                                 |  |
| T 716           | WSDOT          | $\checkmark$ | $\checkmark$ | Method of Random Sampling for Locations of Testing and Sampling Sites                                                                    |  |
| T 720           | WSDOT          |              | $\checkmark$ | Method of Test for Thickness Measurement of Hot Mix Asphalt<br>(HMA) Cores                                                               |  |
| SOP 729         | WSDOT          | $\checkmark$ | $\checkmark$ | Standard Operating Procedure for Determination of the Moving Average of Theoretical Maximum Density (TMD) for HMA                        |  |
| SOP 730         | WSDOT          | $\checkmark$ | $\checkmark$ | Standard Operating Procedure for Correlation of Nuclear Gauge Densities<br>With Hot Mix Asphalt (HMA) Cores                              |  |
| SOP 731         | WSDOT          | $\checkmark$ | $\checkmark$ | Standard Operating Procedure for Determining Volumetric Properties of Hot Mix Asphalt                                                    |  |
| SOP 732         | WSDOT          | $\checkmark$ | $\checkmark$ | Standard Operating Procedure for Volumetric Design for Hot-Mix Asphalt (HMA)                                                             |  |
| SOP 733         | WSDOT          | $\checkmark$ | $\checkmark$ | Standard Operating Procedure for Determination of Pavement<br>Density Differentials Using the Nuclear Density Gauge                      |  |
| SOP 734         | WSDOT          | $\checkmark$ | $\checkmark$ | Standard Operating Procedure for Sampling Hot Mix Asphalt<br>After Compaction (Obtaining Cores)                                          |  |
| SOP 735         | WSDOT          | $\checkmark$ | $\checkmark$ | Standard Operating Procedure for Longitudinal Joint Density                                                                              |  |
| SOP 736         | WSDOT          |              | $\checkmark$ | In-Place Density of Bituminous Mixes Using Cores                                                                                         |  |
| SOP 737         | WSDOT          |              | ✓            | Procedure for the Forensic Testing of HMA Field Cores                                                                                    |  |
| SOP 738         | WSDOT          | ✓            | $\checkmark$ | Establishing Maximum Field Density for Recycled Concrete Aggregates by Test Point Evaluation                                             |  |
| D 792           | ASTM           |              |              | Density and Specific Gravity (Relative Density) of Plastics by<br>Displacement                                                           |  |

| Numerical Order     |       |              |              |                                                                                                                                                                       |  |
|---------------------|-------|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Procedure<br>Number | Owner | Field<br>Use | In<br>Manual | Test Method                                                                                                                                                           |  |
| T 802               | WSDOT | ✓            | ✓            | Method of Test for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading)                                                                        |  |
| C 805               | ASTM  |              |              | Rebound Number of Hardened Concrete                                                                                                                                   |  |
| C 805               | WSDOT | $\checkmark$ | $\checkmark$ | Rebound Hammer Determination of Compressive Strength of Hardened Concrete                                                                                             |  |
| T 807               | WSDOT | $\checkmark$ | $\checkmark$ | Method of Operation of California Profilograph and Evaluation of Profiles                                                                                             |  |
| T 808               | WSDOT | $\checkmark$ | $\checkmark$ | Method for Making Flexural Test Beams                                                                                                                                 |  |
| T 813               | WSDOT | ✓            | ✓            | Field Method of Fabrication of 2 in (50 mm) Cube Specimens for Compressive Strength Testing of Grouts and Mortars                                                     |  |
| T 814               | WSDOT |              | √            | Method of Test for Water Retention Efficiency of Liquid Membrane-<br>Forming Compounds and Impermeable Sheet Materials for<br>Curing Concrete                         |  |
| T 818               | WSDOT |              | $\checkmark$ | Air Content of Freshly Mixed Self-Compacting Concrete by the Pressure Method                                                                                          |  |
| T 819               | WSDOT |              | $\checkmark$ | Making and Curing Self-Compacting Concrete Test Specimens in the Field                                                                                                |  |
| D 823               | ASTM  |              |              | Producing Films of Uniform Thickness of Paint, Coatings and Related Products on Test Panels                                                                           |  |
| C 881               | ASTM  |              |              | Standard Specification for Epoxy-Resin-Base Bonding Systems for Concrete                                                                                              |  |
| C 882               | ASTM  |              | $\checkmark$ | Bond Strength of Epoxy-Resin Systems Used With Concrete By Slant Shear (Checklist Only)                                                                               |  |
| SOP 914             | WSDOT | $\checkmark$ | $\checkmark$ | Practice for Sampling of Geosynthetic Material for Testing                                                                                                            |  |
| T 915               | WSDOT |              | $\checkmark$ | Practice for Conditioning of Geotextiles for Testing                                                                                                                  |  |
| T 923               | WSDOT |              | $\checkmark$ | Thickness Measurement of Geotextiles                                                                                                                                  |  |
| T 925               | WSDOT |              | ✓            | Standard Practice for Determination of Long-Term Strength for<br>Geosynthetic Reinforcement                                                                           |  |
| T 926               | WSDOT |              | $\checkmark$ | Geogrid Brittleness Test                                                                                                                                              |  |
| C 939               | ASTM  |              | _            | Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method)                                                                                                     |  |
| C 939               | WSDOT | $\checkmark$ | $\checkmark$ | FOP for ASTM for Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method)                                                                                    |  |
| 1188                | IEEE  |              |              | Standards Publication: Recommended Practice for Maintenance, Testing,<br>and Replacement of Valve-Regulated Lead-Acid (VRLA) batteries for<br>Stationary Applications |  |
| C 1218              | ASTM  |              |              | Water-Soluble Chloride in Mortar and Concrete                                                                                                                         |  |
| C 1231              | ASTM  |              |              | Use of Unbonded Caps in Determination of Compressive Strength of<br>Hardened Cylindrical Concrete Specimens                                                           |  |
| C 1231              | WSDOT | $\checkmark$ | $\checkmark$ | FOP for ASTM C1231, Use of Unbonded Caps in Determination of<br>Compressive Strength of Hardened Cylindrical Concrete Specimens                                       |  |
| C 1437              | ASTM  |              |              | Standard Test Method for Flow of Hydraulic Cement Mortar                                                                                                              |  |
| D 1475              | ASTM  |              |              | Density of Liquid Coatings, Inks, and Related Products                                                                                                                |  |
| C 1604              | ASTM  |              |              | Obtaining and Testing Drilled Cores of Shotcrete                                                                                                                      |  |
| C 1611              | WSDOT | ✓            | ✓            | FOP for ASTM C 1611/C 1611M Standard Test Method for Slump Flow of Self-Consolidating Concrete                                                                        |  |

|                  | Numerical Order       |              |              |                                                                                                                                |  |  |
|------------------|-----------------------|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|
| Procedure        |                       | Field        | ln<br>Manual |                                                                                                                                |  |  |
| Number           | Owner                 | Use          | Manual       |                                                                                                                                |  |  |
| C 1621           | WSDOT                 | ✓            | $\checkmark$ | FOP for ASTM C 1621/C 1621M Standard Test Method for Passing Ability<br>of Self-Consolidating Concrete by J-Ring               |  |  |
| D 1683           | ASTM                  |              |              | Failure in Sewn Seams of Woven Fabrics                                                                                         |  |  |
| D 1751           | ASTM                  |              |              | Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Nonextruding and Resilient Bituminous Types) |  |  |
| D 2240           | ASTM                  |              |              | Standard Test Method for Rubber Property – Durometer Hardness                                                                  |  |  |
| D 2244           | ASTM                  |              |              | Standard Practice for Calculation of Color Tolerances and Color<br>Differences From Instrumentally Measured Color Coordinates  |  |  |
| D 2369           | ASTM                  |              |              | Volatile Content of Coatings                                                                                                   |  |  |
| D 2487           | ASTM                  |              |              | Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)                    |  |  |
| D 2488           | ASTM                  |              |              | Standard Practice for Description and Identification of Soils (Visual-Manual Procedure)                                        |  |  |
| D 2621           | ASTM                  |              |              | Infrared Identification of Vehicle Solids From Solvent-Reducible Paints                                                        |  |  |
| D 2628/<br>M 220 | ASTM                  | $\checkmark$ | $\checkmark$ | Preformed Polychloroprene Elastomeric Joint Seals for Concrete<br>Pavements                                                    |  |  |
| D 2697           | ASTM                  |              |              | Volume Nonvolatile Matter in Clear or Pigmented Coatings                                                                       |  |  |
| D 2698           | ASTM                  |              |              | Determination of the Pigment Content of Solvent-Reducible Paints by<br>High-Speed Centrifuging                                 |  |  |
| D 3111           | ASTM                  |              |              | Flexibility Determination of Hot-Melt Adhesives by Mandrel Bend Test<br>Method                                                 |  |  |
| D 3723           | ASTM                  |              |              | Pigment Content of Water Emulsion Paints by Temperature Ashing                                                                 |  |  |
| D 4186           | ASTM                  |              |              | One-Dimensional Consolidation Properties of Saturated Cohesive Soils<br>Using Controlled-Strain Loading                        |  |  |
| D 4354           | ASTM                  |              | $\checkmark$ | Standard Practice for Sampling of Geosynthetics and Rolled Erosion<br>Control Products (RECPs) for Testing                     |  |  |
| D 4355           | ASTM                  |              |              | Deterioration of Geotextiles From Exposure to Light, Moisture and Heat in a Xenon-Arc-Type Apparatus                           |  |  |
| D 4491           | ASTM                  |              |              | Water Permeability of Geotextiles by Permittivity                                                                              |  |  |
| D 4533           | ASTM                  |              |              | Trapezoid Tearing Strength of Geotextiles                                                                                      |  |  |
| D 4595           | ASTM                  |              |              | Tensile Properties of Geotextiles by the Wide-Width Strip Method                                                               |  |  |
| D 4632           | ASTM                  |              |              | Grab Breaking Load and Elongation of Geotextiles                                                                               |  |  |
| D 4644           | ASTM                  |              |              | Slake Durability of Shales and Similar Weak Rocks                                                                              |  |  |
| D 4694           | ASTM                  |              |              | Deflections with Falling-Weight-Type Impulse Load Device                                                                       |  |  |
| D 4751           | ASTM                  |              |              | Determining Apparent Opening Size of a Geotextile                                                                              |  |  |
| D 5084           | ASTM                  |              |              | Measurement of Hydraulic Conductivity of Saturated Porous Materials<br>Using a Flexible Wall Permeameter                       |  |  |
| D 5167           | ASTM                  |              |              | Melting of Hot-Applied Joint and Crack Sealant and Filler for Evaluation                                                       |  |  |
| ATC 5301         | AASHTO<br>ITE<br>NEMA |              |              | Publication: Advanced Transportation Controller (ATC) Cabinet Standard                                                         |  |  |
| D 5311           | ASTM                  |              |              | Load Controlled Cyclic Triaxial Strength of Soil                                                                               |  |  |
| D 5329           | ASTM                  |              |              | Sealants and Fillers, Hot-Applied, for Joints and Cracks in Asphalt<br>Pavements and Portland Cement Concrete Pavements        |  |  |

|                     | Numerical Order |              |              |                                                                                                                                                                                                 |  |  |
|---------------------|-----------------|--------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Procedure<br>Number | e<br>Owner      | Field<br>Use | In<br>Manual | Test Method                                                                                                                                                                                     |  |  |
| D 5731              | ASTM            |              |              | Determination of the Point Load Strength Index of Rock and Application to Rock Strength Classifications                                                                                         |  |  |
| D 6241              | ASTM            |              |              | Static Puncture Strength of Geotextiles and Geotextile-Related Products<br>Using a 50-mm Probe                                                                                                  |  |  |
| D 6467              | ASTM            |              |              | Torsional Ring Shear Test to Determine Drained Residual Shear Strength of Cohesive Soils                                                                                                        |  |  |
| D 6528              | ASTM            |              |              | Consolidated Undrained Direct Simple Shear Testing of Cohesive Soils                                                                                                                            |  |  |
| D 6690              | ASTM            |              |              | Joint and Crack Sealants, Hot Applied, for Concrete and Asphalt Pavements                                                                                                                       |  |  |
| D 6931              | ASTM            |              | $\checkmark$ | Indirect Tensile (IDT) Strength of Asphalt Mixtures                                                                                                                                             |  |  |
| D 7012              | ASTM            |              | √            | Compressive Strength and Elastic Moduli of Intact Rock Core Specimens<br>under Verying States of Stress and Temperatures                                                                        |  |  |
| D 7091              | ASTM            |              | √            | Nondestructive Measurement of Dry Film Thickness of Nonmagnetic<br>Coatings Applied to Ferrous Metals and Nonmagnetic, Nonconductive<br>Coatings Applied to Non-Ferrous Metals (Checklist Only) |  |  |
| 62040-3             | IEC             |              |              | Standards Publication: Uninterruptible Power Systems (UPS) – Method for specifying the performance and test requirements                                                                        |  |  |



### WSDOT Standard Practice for HMA Mix Designs QC 8

#### Standard Practice for Development, Submittal and Approval of Hot Mix Asphalt Mix Designs

- 1. Scope
  - 1.1 This standard specifies requirements and procedures for evaluation and approval of Hot Mix Asphalt mix designs for the Qualified Products List.
  - 1.2 This standard may involve hazardous materials, operations and equipment. It does not address all of the safety problems associated with their use. It is the responsibility of whoever uses this standard to consult and establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
- 2. Referenced Documents
  - 2.1 WSDOT Standards
    - 2.1.1 Standard Specifications for Road, Bridge, and Municipal Construction M 41-10

#### 3. Terminology

- 3.1 AASHTO American Association of State Highway and Transportation Officials
- 3.2 ASA Aggregate Source Approval
- 3.3 **ASTM** American Society of Testing and Materials
- 3.4 **Bituminous Materials Section** Testing Laboratory at the WSDOT State Materials Laboratory
- 3.5 **Business Days** All weekdays, excluding state and federal holidays
- 3.6 **Contractor/Producer** The Contractor, Producer or production facility that has the capacity for producing HMA meeting WSDOT *Standard Specifications*.
- 3.7 **HMA** Hot Mix Asphalt
- 3.8 **Materials Quality Assurance Section** Office responsible for managing the Qualified Products List at the WSDOT State Materials Laboratory
- 3.9 **PG** Performance Graded asphalt binder
- 3.10 **QPL** Qualified Products List
- 3.11 State Materials Laboratory 1655 S. 2nd Avenue SW, Tumwater, WA 98512-6951
- 3.12 **WSDOT** Washington State Department of Transportation

#### 4. Significance and Use

4.1 This standard specifies procedures for designing, submitting, evaluating and approving HMA mix designs for inclusion to the QPL.

#### 5. Mix Design Development

- 5.1 The Contractor/Producer or designee shall develop a HMA mix design in accordance with Section 5-04.2(1) of the *Standard Specifications*. The HMA mix design aggregate structure, asphalt binder content, anti-stripping additive, rutting susceptibility and indirect tensile strength shall be determined in accordance with WSDOT SOP 732, FOP for AASHTO T 324 and WSDOT FOP for ASTM D 6931 and meet the requirements of Sections 9-03.8(2) and 9-03.8(6) of the *Standard Specifications*.
  - 5.1.1 The Contractor/Producer's mix design %Gmm Ndesign must be 96.0  $\pm$  0.2% at the optimum percent binder (Pb).

#### 6. Submission to the WSDOT Qualified Products List

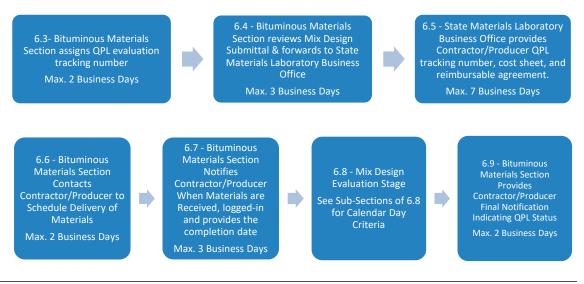
- 6.1 Once the HMA mix design has been developed, the Contractor/Producer shall contact the Bituminous Materials Section at HMAMD@wsdot.wa.gov or 360-709-5419 to initiate the HMA mix design submittal process.
- 6.2 To initiate the mix design submittal process, the Contractor/Producer shall provide the following:
  - Company contact and billing information
  - A completed copy of WSDOT Form 350-042
  - A completed WSDOT Product Submittal Application Form
  - ASA Report for the aggregate source(s)
  - QPL Contractor/Producer Product Information page(s) for the PG asphalt binder and the anti-stripping additive
  - Certification on the source of the recycled materials and applicable documentation per *Standard Specifications* Sections 5-04.2 and 9-03.21(1) for mix designs containing Recycled Asphalt Pavement (RAP) and/or Reclaimed Asphalt Shingles (RAS)
- 6.3 Once the information from Step 6.2 is received the Bituminous Materials Section will assign a QPL evaluation tracking number. This will initiate the timeline associated with each step of the mix design evaluation process in Section 6 of this plan, as shown in Table 1.
- 6.4 The Bituminous Materials Section will review the mix design submittal (WSDOT Form 350-042) and all documentation provided to ensure it is complete and meets specification requirements. If the mix design submittal is complete and meets specification, the Bituminous Materials Section will prepare the initial letter with Cost estimate and email to the State Materials Laboratory Business Office. Mix design submittals that are incomplete or do not meet the specification requirements will be rejected and require resubmittal in accordance with Section 6.2 of this plan. All timelines in Table 1 will restart with resubmittal of mix designs.

- 6.5 The State Materials Laboratory Business Office will provide the following to the Contractor/ Producer:
  - QPL evaluation tracking number
  - Initial letter detailing mix design evaluation
  - Cost sheet for mix design evaluation detailing submittal requirements and associated charges
  - Reimbursable Agreement and Statewide Vendor Forms (if needed)
- 6.6 After Reimbursable Agreement and Statewide Vendor Forms are returned for the mix design evaluation, the Bituminous Materials Section will contact the Contractor/Producer to schedule the mix design materials delivery date.
  - 6.6.1 The Contractor shall submit representative samples of aggregate, RAP and RAS (if required), totaling 700 pounds proportioned to match the Contractor's proposal to the State Materials Laboratory for testing.

For example, if the Contractor's proposal consists of five stockpiles with the following blending ratio:

| Material                           | Ratio |
|------------------------------------|-------|
| <sup>3</sup> ⁄ <sub>4</sub> ″ – #4 | 20%   |
| 1⁄2″ – #8                          | 30%   |
| #4 – 0                             | 30%   |
| RAP                                | 15%   |
| RAS                                | 5%    |

Calculate the amount of aggregate needed from each stockpile in the following manner:


| Material              |                | Pounds of Aggregate<br>Needed Per Stockpile |
|-----------------------|----------------|---------------------------------------------|
| <sup>3</sup> ⁄4″ – #4 | 700 lbs x 0.20 | 140 pounds                                  |
| 1⁄2″ – #8             | 700 lbs x 0.30 | 210 pounds                                  |
| #4 – 0                | 700 lbs x 0.30 | 210 pounds                                  |
| RAP                   | 700 lbs x 0.15 | 105 pounds                                  |
| RAS                   | 700 lbs x 0.05 | 35 pounds                                   |

Transport aggregate in bags or other containers so constructed as to preclude loss or contamination of any part of the sample, or damage to the contents from mishandling during shipment. The weight limit for each bag or container of aggregate is 30 pounds maximum.

6.6.2 Each aggregate bag or container shall be clearly marked or labeled with suitable identification including the contract number, aggregate source identification and size of stockpile material.

- 6.7 The Bituminous Materials Section will notify the Contractor/Producer when the mix design materials have been received, logged-in and a calendar day completion will be provided to the Contractor/Producer as specified in Section 6.9.
  - 6.7.1 Mix design materials that are non-representative and/or out of specification will be rejected and require resubmittal of all mix design material. Mix design materials that are rejected and not picked up by the Contractor/Producer within 2 working days of the receipt of rejection will be disposed of. All timelines in Table 1 will restart with resubmittal of mix design materials.
- 6.8 A priority queue will be established by the Bituminous Materials Section for HMA mix design evaluations.
  - 6.8.1 Preference will be given to mix designs submitted for WSDOT contracts.
  - 6.8.2 HMA mix design evaluations for WSDOT contracts will be completed within 25 calendar days after the notification in Section 6.8.
  - 6.8.3 HMA mix design evaluations that are not for WSDOT contracts will be completed approximately 40 calendar days after the notification in Section 6.7.
  - 6.8.4 The Bituminous Materials Section reserves the right to limit the number of HMA mix design evaluations accepted for non WSDOT contracts at any time. Workload and staffing will dictate the number of HMA mix design evaluations accepted at one time.
- 6.9 After the mix design evaluation is complete the Bituminous Materials Section will provide the status of the evaluation to the following:
  - Final notification to the Contractor/Producer indicating QPL status after completion of the mix design evaluation.
  - Notification to the Materials Quality Assurance Section, QPL Engineer, that the evaluation is complete, and direction to add the HMA Mix Design to the QPL if applicable.

# Table 1Timelines Associated with Each Step of the Mix Design<br/>Evaluation Process



WSDOT Materials Manual M 46-01.40 January 2022

#### 7. Mix Design Evaluation

- 7.1 The HMA mix design submitted by the Contractor/Producer will be evaluated by the Bituminous Materials Section in accordance with Section 9-03.8(2) and 9-03.8(6) of the *Standard Specifications*. All communication from the Bituminous Materials Section will be to the Contractor's/Producer's contact as specified on WSDOT Form 350-042.
- 7.2 HMA mix designs will be placed on the QPL provided they meet the requirements of Section 9-03.8(2) and 9-03.8(6) of the *Standard Specifications*.
  - 7.2.1 Voids in Mineral Aggregate (VMA) must be within 0.5% of the minimum specification in accordance with Section 9-03.8(2) of the *Standard Specifications* for the class of HMA evaluated.
  - 7.2.2 % Gmm at N design must be within 1.5% of the specification in Section 9-03.8(2) of the *Standard Specifications* for the class of HMA evaluated.
  - 7.2.3 Voids Filled with Asphalt (VFA) in Section 9-03.8(2) will not be part of the mix design evaluation.
- 7.3 A mix design that fails to meet the requirements listed in Section 7.2, 7.2.1 and 7.2.2 will not be accepted or placed on the QPL.
- 7.4 Adjustments to mix designs will not be allowed once they have been evaluated.
- 7.5 The Contractor/Producer will be issued a QPL mix design record providing the mix design is in compliance with Section 9 of this Standard Practice.
- 7.6 The QPL listing for HMA mix designs will show the following information:
  - Company name
  - HMA Class
  - Aggregate Source(s)
  - PG Grade
  - PG Supplier

Anti-stripping additive brand and quantity (if applicable)

#### 8. Referencing Mix Designs From The QPL

- 8.1 Requests for reference HMA mix designs for non WSDOT projects will be completed on WSDOT Form 350-041 and emailed to HMAMD@wsdot.wa.gov.
- 8.2 Reference HMA mix design reports will be issued for new mix designs on active and awarded WSDOT contracts once accepted and placed on the QPL.
- 8.3 Reference HMA mix design reports will be issued for current mix designs on active and awarded WSDOT contracts provided the HMA production history is in compliance with *Standard Specifications* Section 5-04.3(11)F.

#### 9. Removal From The QPL

- 9.1 HMA mix designs will be automatically removed from the QPL in accordance with *Standard Specifications* Section 5-04.2(1).
- 9.2 HMA mix designs may be removed from the QPL if found in nonconformance with the *Standard Specifications* or this Standard Practice. Causes for removal from the QPL may include, but are not limited to the following:
  - Failure to comply with requirements of Standard Practice QC 8.
  - HMA mix designs that are out of compliance in accordance with *Standard Specifications*
  - Section 5-04.3(11)F.
  - Failure to notify WSDOT of changes in HMA production.
  - Removal at the request of the Contractor/Producer

#### 10. Ignition Furnace Calibration Factor (IFCF) Samples

- 10.1 Each HMA mix design submitted for evaluation will have 12 IFCF samples produced for WSDOT as part of the QPL evaluation process.
- 10.2 The Contractor/Producer may elect to have 4 IFCF samples produced as part of the QPL evaluation process.

## **WSDOT Standard Practice QC 11**

Vacant

This page intentionally left blank.

# WSDOT Standard Practice QC 12 (ASA) Standard Practice for Evaluation of Aggregate Sources

# 1. Scope

The standard specifies procedures for approval of aggregate sources. This standard may involve hazardous, operations and equipment. It does not address all of the safety problems associated with their use. It is the responsibility of those using this standard to consult and establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

# 2. Referenced Documents

# 2.1 WSDOT Standards

2.1.1 Standard Specifications for Road, Bridge, and Municipal Construction M 41-10

# 3. Terminology

AASHTO - American Association of State Highway and Transportation Officials

ASA – Aggregate Source Approval database

WSDOT - The Washington State Department of Transportation

# 4. Significance and Use

This standard specifies procedures for approval of aggregate sources.

#### 5. Sources requesting Aggregate Source Approval (ASA) evaluation

#### 5.1 Process Initiation and Payment.

- 5.1.1 To initiate submittal process contact the ASA Engineer by email at ASA@WSDOT. WA.GOV or by phone at 360-709-5442.
- 5.1.2 Once the Letter and Scope of Work Budget Estimate is received, the requestor is required to contact the State Materials Lab Business section to establish a "Statewide Vendor Number" and sign the "Reimbursable Agreement for State Materials Lab Materials Evaluation Program" contract. Sampling and testing cannot occur until these documents are submitted to the State Materials Lab Business Section and approved.
- 5.1.3 Invoices will be generated and sent to the requestor during the evaluation. Once receiving an invoice, you are required to pay the full invoice amount.
- 5.1.4 Once the invoice is received, online payments by credit card can be made by WSDOT's Materials Evaluation Program (MEP), which is accessible via Secure Access Washington (SAW) at https://secureaccess.wa.gov. For online payment instructions, please visit: https://wsdot.wa.gov/engineering-standards/construction-materials/materials-evaluation-program.

- 5.1.5 Payments by Check: please send your payment for the invoice that was sent to you to: Washington State Department of Transportation, ATTN: Cashier, WSDOT State Materials Laboratory ASA2021###, Invoice Number ######, PO Box 47305, Olympia, WA 98504.
- 5.1.6 The "Statewide Vendor Number" and the signed "Reimbursable Agreement for State Materials Lab Materials Evaluation Program" is received and processed by the WSDOT Materials Laboratory Business Section.

# 5.2 Sampling and Testing

- 5.2.1 Once the signed Reimbursable Agreement is accepted and the Work Order created, the Department will sample and test the stockpile of materials. A minimum 10-ton stockpile of materials is required, and the sampling will be done in accordance with WSDOT SOP 128 Sampling for Aggregate Source Approval.
- 5.2.2 Sample will be transported to the State Materials Laboratory for testing.
- 5.2.3 The Aggregate source shall contact the ASA Engineer at the Materials Quality Assurance (MQA) Section, State Materials Laboratory, to make a request to be resampled on the interval established by the Department, up to a maximum interval of five years.

# 5.3 Reporting

5.3.1 Once testing has concluded, the results will be posted on the ASA website and a final letter with a copy of the ASA report will be sent to the requestor.

# 5.4 Suspension of Source Approval:

- 5.4.1 The sources listing on the ASA will be suspended, if:
  - The Department tests do not indicate compliance with *Standard Specifications* Section 9-03.
  - The aggregate source does not make payment for renewal sampling attesting.

# SAMPLING FRESHLY MIXED CONCRETE WAQTC TM 2

# Scope

This practice covers procedures for obtaining representative samples of fresh concrete delivered to the project site. The practice includes sampling from stationary, paving and truck mixers, and from agitating and non-agitating equipment used to transport central mixed concrete.

This practice also covers the removal of large aggregate particles by wet sieving.

Sampling concrete may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices.

**Warning**—Fresh Hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.

# Apparatus

- Receptacle: wheelbarrow, bucket or other suitable container that does not alter the properties of the material being sampled
- Sample cover (plastic, canvas, or burlap)
- Shovel
- Cleaning equipment, including scrub brush, rubber gloves, water
- Apparatus for wet sieving, including: a sieve(s), meeting the requirements of FOP for AASHTO T 27/T 11, minimum of 2 ft<sup>2</sup> (0.19 m<sup>2</sup>) of sieving area, conveniently arranged and supported so that the sieve can be shaken rapidly by hand.

#### Procedure

- 1. Use every precaution in order to obtain samples representative of the true nature and condition of the concrete being placed being careful not to obtain samples from the very first or very last portions of the batch. The size of the sample will be 1.5 times the volume of concrete required for the specified testing, but not less than  $0.03 \text{ m}^3$  (1 ft<sup>3</sup>).
- 2. Dampen the surface of the receptacle just before sampling, empty any excess water.
- *Note 1:* Sampling should normally be performed as the concrete is delivered from the mixer to the conveying vehicle used to transport the concrete to the forms; however, specifications may require other points of sampling, such as at the discharge of a concrete pump.

36\_WAQTC\_TM2\_short\_21\_errata

Concrete 9-1

# CONCRETE

3. Use one of the following methods to obtain the sample:

#### • Sampling from stationary mixers

Obtain the sample after a minimum of  $1/2 \text{ m}^3 (1/2 \text{ yd}^3)$  of concrete has been discharged. Perform sampling by passing a receptacle completely through the discharge stream, or by completely diverting the discharge into a receptacle. Take care not to restrict the flow of concrete from the mixer, container, or transportation unit so as to cause segregation. These requirements apply to both tilting and non-tilting mixers.

#### • Sampling from paving mixers

Obtain the sample after the contents of the paving mixer have been discharged. Obtain increments from at least five different locations in the pile and combine into one test sample. Avoid contamination with subgrade material or prolonged contact with absorptive subgrade. To preclude contamination or absorption by the subgrade, the concrete may be sampled by placing a shallow container on the subgrade and discharging the concrete across the container.

#### • Sampling from revolving drum truck mixers or agitators

Obtain the sample after a minimum of  $1/2 \text{ m}^3 (1/2 \text{ yd}^3)$  of concrete has been discharged. Obtain sample after all of the water has been added to the mixer. Do not obtain sample from the very first or last portions of the batch discharge. Perform sampling by repeatedly passing a receptacle through the entire discharge stream or by completely diverting the discharge into a receptacle. Regulate the rate of discharge of the batch by the rate of revolution of the drum and not by the size of the gate opening.

# • Sampling from open-top truck mixers, agitators, non-agitating equipment, or other types of open-top containers

Obtain the sample by whichever of the procedures described above is most applicable under the given conditions.

#### Sampling from pump or conveyor placement systems

Obtain sample after a minimum of  $1/2 \text{ m}^3 (1/2 \text{ yd}^3)$  of concrete has been discharged. Obtain sample after all of the pump slurry has been eliminated. Perform sampling by repeatedly passing a receptacle through the entire discharge system or by completely diverting the discharge into a receptacle. Do not lower the pump arm from the placement position to ground level for ease of sampling, as it may modify the air content of the concrete being sampled. Do not obtain samples from the very first or last portions of the batch discharge.

- 4. Transport sample to the testing location.
- 5. Remix with a shovel the minimum amount necessary to ensure uniformity. Protect the sample from direct sunlight, wind, rain, and sources of contamination.

36\_WAQTC\_TM2\_short\_21\_errata Concrete 9-2

#### WAQTC TM 2 (21)

6. Complete test for temperature and start tests for slump and air content within 5 minutes of obtaining the sample. Start molding specimens for strength tests within 15 minutes of obtaining the sample. Complete the test methods as expeditiously as possible.

# Wet Sieving

When required due to oversize aggregate, the concrete sample shall be wet sieved, after transporting but prior to remixing, for slump testing, air content testing or molding test specimens, by the following:

- 1. Place the sieve designated by the test procedure over the dampened receptacle.
- 2. Pass the concrete over the designated sieve. Do not overload the sieve (one particle thick).
- 3. Shake or vibrate the sieve until no more material passes the sieve. A horizontal back and forth motion is preferred.
- 4. Discard oversize material including all adherent mortar.
- 5. Repeat until sample of sufficient size is obtained. Mortar adhering to the wet-sieving equipment shall be included with the sample.
- 6. Using a shovel, remix the sample the minimum amount necessary to ensure uniformity.

*Note 2:* Wet sieving is not allowed for samples being used for density determinations according to the FOP for AASHTO T 121.

#### Report

- On forms approved by the agency
- Sample ID
- Date
- Time
- Location
- Quantity represented

January 2022

36 WAQTC TM2 short 21 errata

CONCRETE

WAQTC

36\_WAQTC\_TM2\_short\_21\_errata C

Concrete 9-4

# WAQTC

# PERFORMANCE EXAM CHECKLIST

# SAMPLING FRESHLY MIXED CONCRETE WAQTC TM 2

| Pa  | rtic                                                               | ipant NameExam Date                                                                                                | Exam Date |         |  |
|-----|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------|---------|--|
| Re  | cord                                                               | the symbols "P" for passing or "F" for failing on each step of the checklist.                                      |           |         |  |
| Pr  | oce                                                                | dure Element                                                                                                       | Trial 1   | Trial 2 |  |
| 1.  | Re                                                                 | ceptacle dampened and excess water removed?                                                                        |           |         |  |
| 2.  | Ob                                                                 | tain a representative sample from drum mixer:                                                                      |           |         |  |
|     | a.                                                                 | Concrete sampled after 1/2 m <sup>3</sup> (1/2 yd <sup>3</sup> ) discharged?                                       |           |         |  |
|     | b.                                                                 | Receptacle passed through entire discharge stream or discharge stream completely diverted into sampling container? |           |         |  |
| 3.  | Ob                                                                 | tain a representative sample from a paving mixer:                                                                  |           |         |  |
|     | a.                                                                 | Concrete sampled after all the concrete has been discharged?                                                       |           |         |  |
|     | b.                                                                 | Material obtained from at least 5 different locations in the pile?                                                 |           |         |  |
|     | c.                                                                 | Avoid contaminating the sample with sub-grade materials.                                                           |           |         |  |
| 4.  | Ob                                                                 | tain a representative sample from a pump:                                                                          |           |         |  |
|     | a.                                                                 | Concrete sampled after $1/2 \text{ m}^3$ ( $1/2 \text{ yd}^3$ ) has been discharged?                               |           |         |  |
|     | b.                                                                 | All the pump slurry is out of the lines?                                                                           |           |         |  |
|     | c.                                                                 | Receptacle passed through entire discharge stream or discharge stream completely diverted into sampling container? |           |         |  |
|     | d.                                                                 | Do not lower the pump arm from the placement position.                                                             |           |         |  |
| 5.  | Sa                                                                 | mple transported to place of testing?                                                                              |           |         |  |
| 6.  | Sa                                                                 | mple combined, or remixed, or both?                                                                                |           |         |  |
| 7.  | . Sample protected?                                                |                                                                                                                    |           |         |  |
| 8.  | Mi                                                                 | nimum size of sample used for strength tests 0.03 m <sup>3</sup> (1ft <sup>3</sup> )?                              |           |         |  |
| 9.  | . Completed temperature test within 5 minutes of obtaining sample? |                                                                                                                    |           |         |  |
| 10. | Sta                                                                | art tests for slump and air within 5 minutes of obtaining sample?                                                  |           |         |  |
| 11. | Sta                                                                | art molding cylinders within 15 minutes of obtaining sample?                                                       |           |         |  |
| 12. | Pro                                                                | otect sample against rapid evaporation and contamination?                                                          |           |         |  |

#### **OVER**

| CONCRETE                                                   | WAQTC                                           | WAQTC TM 2 (13)   |  |  |  |  |  |
|------------------------------------------------------------|-------------------------------------------------|-------------------|--|--|--|--|--|
| Procedure Element Trial 1 Trial                            |                                                 |                   |  |  |  |  |  |
| 13. Wet Sieving:                                           |                                                 |                   |  |  |  |  |  |
| a. Required sieve                                          | size determined for test method to be performed | d?                |  |  |  |  |  |
| b. Concrete place                                          | d on sieve and doesn't overload the sieve.      |                   |  |  |  |  |  |
| c. Sieve shaken u                                          | intil no more material passes the sieve.        |                   |  |  |  |  |  |
| d. Sieving continued until required testing size obtained. |                                                 |                   |  |  |  |  |  |
| e. Oversized aggregate discarded.                          |                                                 |                   |  |  |  |  |  |
| f. Sample remixe                                           | ed.                                             |                   |  |  |  |  |  |
| Comments: Fin                                              | rst attempt: PassFail Second                    | attempt: PassFail |  |  |  |  |  |
| Examiner Signature                                         | WAQTC #:                                        |                   |  |  |  |  |  |

This checklist is derived, in part, from copyrighted material printed in ACI CP-1, published by the American Concrete Institute.

Concrete 3-10

# WAQTC

# PERFORMANCE EXAM CHECKLIST (ORAL)

# SAMPLING FRESHLY MIXED CONCRETE WAQTC TM 2

| Pa | rticipant Nam                    | eExam Date                                                                               | Exam Date |         |  |  |
|----|----------------------------------|------------------------------------------------------------------------------------------|-----------|---------|--|--|
| Re | cord the symbols                 | "P" for passing or "F" for failing on each step of the checklist.                        |           |         |  |  |
| Pr | ocedure Eleme                    | ent                                                                                      | Trial 1   | Trial 2 |  |  |
| 1. | What is the min                  | nimum sample size?                                                                       |           |         |  |  |
|    | a. 0.03 m3 or                    | r 1 ft3                                                                                  |           |         |  |  |
| 2. | Describe the sur                 | rface of the receptacle before the sample is introduced into it?                         |           |         |  |  |
|    | a. It must be d                  | lampened.                                                                                |           |         |  |  |
| 3. | Describe how to                  | o obtain a representative sample from a drum mixer.                                      |           |         |  |  |
|    | a. Sample the                    | concrete after 1/2 m3 (1/2 yd3) has been discharged.                                     |           |         |  |  |
|    | -                                | acle through entire discharge stream or completely divert tream into sampling container. |           |         |  |  |
| 4. | Describe how to                  | o obtain a representative sample from a paving mixer.                                    |           |         |  |  |
|    | a. Sample the                    | concrete after all the concrete has been discharged.                                     |           |         |  |  |
|    | b. Obtain the i                  | increments from at least 5 different locations in the pile.                              |           |         |  |  |
|    | c. Avoid conta                   | aminating the sample with sub-grade materials.                                           |           |         |  |  |
| 5. | Describe how to                  | o obtain a representative sample from a pump:                                            |           |         |  |  |
|    | a. Sample the                    | concrete after $1/2 \text{ m}3 (1/2 \text{ yd}3)$ has been discharged.                   |           |         |  |  |
|    | b. Make sure a                   | all the pump slurry is out of the lines.                                                 |           |         |  |  |
|    |                                  | acle through entire discharge stream or completely divert tream into sampling container. |           |         |  |  |
|    | d. Do not low                    | er the pump arm from the placement position.                                             |           |         |  |  |
| 6. | After obtaining                  | the sample what must you do?                                                             |           |         |  |  |
|    | a. Transport to                  | o place of testing.                                                                      |           |         |  |  |
| 7. | What must be d them to the place | lone with the sample once you have transported ce of testing?                            |           |         |  |  |
|    | a. Combine ar                    | nd remix the sample.                                                                     |           |         |  |  |
|    | b. Protect sam                   | ple against rapid evaporation and contamination.                                         |           |         |  |  |

# OVER

18\_WAQTC\_TM2\_pr\_oral\_18

Concrete 3-11

| I | М | 2 |  |
|---|---|---|--|
|   |   |   |  |

WAQTC

| Pr  | oce | Trial 1                                                                                                | Trial 2 |     |
|-----|-----|--------------------------------------------------------------------------------------------------------|---------|-----|
| 8.  | Wl  | nat are the two time parameters associated with sampling?                                              |         |     |
|     | a.  | Complete temperature test and start tests for slump and air within 5 minutes of sample being obtained? |         |     |
|     | b.  | Start molding cylinders within 15 minutes of sample being obtained?                                    |         |     |
| 9.  | Wl  | nat test methods may require wet sieving?                                                              |         |     |
|     | a.  | Slump, air content, and strength specimens?                                                            |         |     |
| 10. | Th  | e sieve size used for wet sieving is based on?                                                         |         |     |
|     | a.  | The test method to be performed.                                                                       |         |     |
| 11. | Но  | w long must you continue wet sieving?                                                                  |         |     |
|     | a.  | Until a sample of sufficient size for the test being performed is obtained.                            |         |     |
| 12. | Wl  | nat is done with the oversized aggregate?                                                              |         |     |
|     | a.  | Discard it.                                                                                            |         |     |
| 13. | Wl  | hat must be done to the sieved sample before testing?                                                  |         |     |
|     | a.  | Remix.                                                                                                 |         |     |
| Сс  | omn | nents: First attempt: PassFailSecond attempt: Pa                                                       | ssF     | ail |
|     |     |                                                                                                        |         |     |
|     |     |                                                                                                        |         |     |
| Ex  | ami | ner Signature WAQTC #:                                                                                 |         |     |

This checklist is derived, in part, from copyrighted material printed in ACI CP-1, published by the American Concrete Institute.

18\_WAQTC\_TM2\_pr\_oral\_18

Concrete 3-12

# LABORATORY PREPARED ASPHALT MIXTURE SPECIMENS WAQTC TM 14

# Significance

The objective of asphalt mixture design is to determine the proper combination of asphalt binder, aggregates, and additives that will provide long lasting performance as part of the pavement structure. Mix designing involves laboratory procedures developed to establish the proper proportion of materials for use in asphalt paving mixtures. Correctly designed asphalt mixtures can be expected to perform successfully for many years.

#### Scope

This practice covers preparing asphalt mixture samples according to an established job mix formula (JMF). The aggregate, asphalt binder, and additives are proportioned based on the JMF and mixed to produce samples for testing or verification of the JMF. These specimens can be used for determining ignition furnace asphalt binder content and aggregate correction factors, performance testing, and other Quality Assurance measures.

There are several practices for batching material in the laboratory. This procedure covers the Iterative Method of batching material and provides a process for checking the accuracy of the batched test samples by confirming the gradation of a batched test sample.

#### Terminology

- RAP Recycled Asphalt Pavement
- RAS Recycled Asphalt Shingles
- Cold feed Term used to reference plant settings for percentages of the individual constituents.
- Iterative Method Batching process that is repeated until the desired gradation is achieved.
- Batch Plan A mathematical process that assists with the batching of the materials.

#### **Apparatus**

- Thermometer(s), or other temperature measuring device(s), with a temperature range of 50-500°F.
- Oven: Capable of maintaining  $230 \pm 9^{\circ}$ F.
- Forced air, ventilated or convection oven: Capable of maintaining the temperature surrounding the sample at  $325 \pm 9^{\circ}$ F.
- Bins, pans, or buckets of adequate size to accommodate fractionated material for each stockpile separated size.
- Labels for each bin that note the aggregate designation and sieve size upon which the material was retained.

WAQTC

- Lids or plastic coverings for bins and buckets to minimize moisture absorption in the fractionated material during storage if necessary.
- Drying/batch containers: Shallow flat metal pans large enough to accommodate a batched sample.
- Balance or scale: Capacity sufficient for the sample mass, accurate to 0.1 percent of the sample mass or readable to 0.1 g
- Sieves: meeting the requirements of the FOP for AASHTO T 27/T 11.
- Mechanical sieve shaker: meeting the requirements of the FOP for AASHTO T 27/T 11.
- Mechanical washing apparatus (optional)
- Suitable drying equipment: meeting the requirements of the FOP for AASHTO T 255.
- Containers: A pan or vessel of a size sufficient to contain the sample covered with water and to permit vigorous agitation without loss of any part of the sample or water.
- Utensils: Spoons, spatulas, brushes, stirring rods, etc.
- Mixer: Of sufficient capacity and design to adequately combine all ingredients.

# **Material Sampling**

- 1. Obtain representative samples of aggregate, from each stockpile listed on the JMF, according to the FOP for AASHTO R 90.
- 2. Obtain samples of asphalt binder according to the FOP for AASHTO R 66.
- 3. Obtain hydrated lime from the supplier listed on the JMF, if used.
- 4. Obtain anti-stripping agent from the supplier listed on the JMF, if used.
- 5. Obtain representative recycled material samples, after the material has been processed for hot mix production use, according to FOP for AASHTO R 90, if used.
- *Note 1:* RAP is material recovered from existing roadways during milling operations or pavement removal during construction. Most RAP requires reprocessing to be useable in new asphalt mixtures. Processing may include crushing and screening of the material.

# Aggregate Preparation

Obtain quality control gradation reports of the separated sizes or stockpiled materials listed on the JMF. The average gradation, expressed as a percent retained, of each stockpile will be used to verify JMF target gradation. If recycled material (RAP or RAS) is included in the JMF, verify the asphalt binder content and gradation are listed.

The virgin aggregates used in the blend may be batched unwashed or washed, according to agency requirements.

FOP Library - 2

#### WAQTC

#### WAQTC TM 14 (19)

# Fractionating of Virgin Aggregate

- 1. Dry each stockpile sample according to the FOP for AASHTO T 255.
- 2. After drying, cool and cover, if necessary, to minimize moisture absorption.
- 3. Select sieves required by the specification. Separate each stockpile sample into individual size fractions according to the FOP for AASHTO T 27/T 11.
- 4. Carefully empty the material retained on each sieve into a bin, pan, or bucket, and label according to size.
- *Note 2*: To reduce the number of sizes of fractionated aggregates from which the batch is prepared, agencies may allow small amounts to be added from other stockpiles. Stockpiles should meet the criteria in Appendix A, Aggregate Batching.
- 5. Cover, if necessary, to prevent moisture absorption.

#### Wash Fractionated Aggregate

When the agency requires, the fractionated aggregate is washed and dried before batching test samples. The adherent fines that are washed out are replaced with material passing the 75  $\mu$ m (No. 200) sieve during batching.

1. Wash each size of fractionated aggregate according to the FOP for AASHTO T 27/11, except for the material passing the 75  $\mu$ m (No. 200) sieve or "Dust."

Note 3: Adherent fines may have different properties than sieved minus 75 µm (No. 200) material.

- 2. Dry according to the FOP for AASHTO T 255.
- 3. Store in separate bins or buckets, label according to size and cover, if necessary.

#### RAP

If RAP, RAS, or both, is included in the JMF:

1. Dry the processed recycled material overnight or to constant mass at  $125 \pm 5^{\circ}$ F.

*Note 4:* Constant mass is achieved when successive mass determinations do not change more than 0.05 percent after an additional 2 hours of drying.

2. Cover and cool.

# **Aggregate Batch Plan**

Batch plans are developed one virgin aggregate stockpile at a time starting with the coarsest stockpile and progressing through the finer stockpiles.

Determine all masses to the nearest 0.1 percent of the sample mass or to the nearest 0.1 g.

- 1. Calculate the required mass for each stockpile (virgin stockpile, lime, RAP, etc.) by multiplying the desired sample size by the cold feed percentage for each stockpile and record to the nearest 0.1 g. The sum of the individual masses must add up to the desired total sample mass.
- 2. Calculate the percent retained for each sieve of the aggregate portions using the control gradation average.

3. Calculate the mass per sieve per stockpile. Start with the coarsest virgin aggregate stockpile, multiply the individual mass for that stockpile by the percent retained on each sieve and record to the nearest 0.1 g.

WAQTC

- 4. Identify the sieve sizes that material from other stockpiles will be added. Document the mass and the contributing stockpile. See Note 2.
- 5. Calculate a cumulative mass total beginning with the largest sieve on the coarsest stockpile. Begin the cumulative total on subsequent finer stockpiles with the ending cumulative total from the previous stockpile.

*Note 5*: Cumulative masses are used so that the balance is not re-zeroed between each addition possibly causing a misrepresentation of the total mass. Repeat with each successive stockpile. If cumulative totals are not used, verify mathematically that the batch plan produces the correct mass of virgin aggregate for each stockpile and the total of all virgin stockpiles.

# Verification of Aggregate Batch Plan

When the fractionated aggregate is not washed before batching, the minus 0.075 (No. 200) batch plan mass may need to be adjusted to compensate for adherent fines.

1. Batch the desired sample size according to the batch plan, excluding recycled material, if applicable.

Note 6: Refer to the FOP for AASHTO T 308 Table 1 for recommended sample size.

- 2. Perform washed sieve analysis according to the FOP for AASHTO T 27/T 11.
- 3. The batched sample percent passing must agree with the Virgin Blend Percent Passing (JMF) within the tolerances of Table 1. If the variation exceeds the allowable difference, adjust the virgin aggregate portion of the batch plan and reverify.

| Table 1                                                     |
|-------------------------------------------------------------|
| Allowable Differences Between Batched and Actual Gradations |

| Sieves              | Allowable Difference (%Passing) |
|---------------------|---------------------------------|
| Larger than No. 8   | $\pm 1.5\%$                     |
| No. 8 to No. 50     | $\pm 1.0\%$                     |
| Smaller than No. 50 | $\pm 0.5\%$                     |

FOP Library - 4

TM 14

#### **Aggregate Preparation**

1. Batch the number of samples at desired sample size according to the batch plan, excluding recycled material, if applicable.

# **Hydrated Lime**

When hydrated lime is mixed with water before incorporating into the mixture, add to the test samples the night before mixing with asphalt binder (approximately 12 hours).

- 1. Determine the mass of hydrated lime to be added to the test sample based on the percent required in the JMF. For mixtures with RAP, the percentage is applied to the virgin aggregate only.
- 2. Weigh out the mass of hydrated lime required for each test sample and store in a closed tin with the test sample.
- 3. Add the hydrated lime to the test sample in an oven proof container.
- 4. Using a spoon or spatula, thoroughly stir the lime into the dry aggregate sample.
- 5. Add sufficient water to thoroughly wet all the aggregate and achieve a "Surface Damp Condition."
- 6. Stir the lime, aggregate and water for approximately five minutes to thoroughly combine. Do not lose any fine material. Spatulas and brushes may be used to clean the fine material from the implements. Do not transfer the mixed sample.
- 7. Place the mixed sample in the oven, set oven temperature in the mixing temperature range.
- 8. Dry according the FOP for AASHTO T 255.

# **Mixing Preparation**

- 1. Heat the mixing equipment such as bowls, mixing paddles, spoons, etc.
- 2. Heat aggregate samples 20°F above the JMF mixing temperature.
- *Note 7:* Heating aggregate above mixing temperature allows for loss of heat during the addition of the asphalt binder. Over 20 °F higher may burn the asphalt binder when it is added to the hot aggregate.
- 3. If RAP material is required, heat carefully in a controlled oven for approximately 2 hrs. at  $230 \pm 9^{\circ}$ F.
- 4. Heat asphalt binder approximately 10°F above the mixing temperature range. Discard unused asphalt binder after the 3 hrs.

# Liquid anti-stripping agent

If liquid anti-striping agent is required:

- a) Determine the mass of anti-stripping agent to be added to the asphalt binder based on the percent required in the JMF. The percentage is applied to the asphalt binder only.
- b) Follow mixing instructions from the anti-stripping agent supplier, as not all products are incorporated in the same manner.

#### WAQTC TM 14 (19)

c) Heat the anti-stripping agent to  $125 \pm 15$  ° F or temperature range from manufacturer labeling.

WAOTC

- d) Determine and record mass of a clean container.
- e) Add asphalt binder, determine and record asphalt binder mass.
- f) Calculate the mass of anti-stripping agent to be added.
- g) Zero the scale and add calculated mass of anti-stripping agent. Record the measured mass of anti-stripping agent.
- h) Discard material if too much anti-stripping agent is added.

Note 8: Use of a small spoon or stirring rod will assist with anti-strip addition.

- i) Stir the combined sample thoroughly with a small spoon or stirring rod.
- j) Loosely place a lid on the container to prevent dissipation of the additive. Do not secure the lid, expansion could cause injury or loss of material.
- k) Place the combined material in an oven at the JMF mixing temperature range. During binder addition ensure product is stirred thoroughly before each use.

*Note 9:* Because the elastic properties of asphalt binder degrade when held at high temperatures, the asphalt binder must be used within 3 hrs. of achieving the mixing temperature.

#### **Mixing Procedure**

- 1. Prepare an initial specimen at the design asphalt binder content to "butter" the mixing bowl and utensils. Discard the specimen after mixing, scrape the bowl and paddle or whip with a spatula or other suitable tool.
- 2. Record mass of "buttered" bowl, spatula, and paddle or whip.
- 3. Remove the spatula and paddle or whip; zero the balance with empty bowl. Introduce the aggregate, mix thoroughly with clean, dry spatula or spoon. Record mass of aggregate, Mass<sub>agg</sub>.
- 4. If RAP is required, introduce the hot RAP and mix thoroughly with the virgin aggregate. Record this mass. Determine M<sub>RAP</sub> by subtracting the M<sub>agg</sub> from the mass of aggregate and RAP.
- 5. Form a crater in the center of the material.
- 6. Calculate Mbinder.
- 7. Zero the scale and add calculated mass of asphalt binder. Record the measured mass of asphalt binder added.

*Note 10:* If too much asphalt binder is added, it may be removed by dipping a corner of a paper towel in the center of the asphalt binder.

- 8. Thoroughly mix for a minimum of two minutes, by hand or mixer, until asphalt binder is uniformly distributed, and aggregate is completely coated.
- 9. Stop the mixer, if used.
- 10. Stir mixture with buttered spatula, scraping the center bottom of the mixing bowl.

TM14\_short\_19

FOP Library - 6

Pub. October 2021

WSDOT Materials Manual M 46-01.40 January 2022

TM 14

- 11. If the aggregate is not thoroughly coated, continue mixing until completely coated.
- 12. Remove mixture from bowl.
- 13. Scrape bowl and paddle or whip with buttered spatula. Place all the mixture into a pan.
- 14. Record mass of empty bowl, spatula, and paddle or whip. Ensure the combined mass and the mass of the initial buttered bowl and utensils is within 0.10 percent of the sample mass of the mixed sample.

*Note 11:* For a 4700 g sample, 0.10% = 4.7 g. and for a 2100 g sample, 0.10% = 2.1 g.

- 15. Age the mixed specimen according to AASHTO R 30 or agency requirements.
- 16. Repeat steps 3 thru 15 for each specimen to be mixed.

#### Calculations

#### **Trial Batch Plan**

#### Mass of material contributed per stockpile:

*mass per stockpile = sample size × stockpile*%

Where:

| mass per stockpile | = | mass of material from each stockpile in test sample |
|--------------------|---|-----------------------------------------------------|
| sample size        | = | desired mass of test sample                         |
| stockpile%         | = | percent of each stockpile in the mixture (JMF)      |

#### Mass of material contributed to each sieve per stockpile:

```
mass per stockpile per sieve = mass per stockpile \times %retained per sieve
Where:
```

| mass per stockpile per sieve | = | amount of fractionated aggregate from each stockpile for each sieve size |
|------------------------------|---|--------------------------------------------------------------------------|
| %retained per sieve          | = | percent retained on each sieve (calculated from crushing records)        |

#### Anti-stripping agent mass added before heating asphalt binder:

| Ma               | $M_{dditive} = \% additive \times M_{heated \ binder}$                          |
|------------------|---------------------------------------------------------------------------------|
| $M_{additive} =$ | mass of anti-stripping agent to be added to the mass of measured asphalt binder |
| %additive =      | percent of anti-stripping agent, based on mass of asphalt binder, from JMF      |
| M heated binder  | = mass of asphalt binder heated for mixing                                      |

TM14 short 19

FOP Library - 7

#### WAQTC

#### Asphalt binder mass

Asphalt binder mass is based on a percent of the mass of "hot" aggregate.

#### **Mixes without RAP**

Determine the mass of asphalt binder to be added to a mix without RAP:

$$M_{binder} = \frac{P_b \times M_{agg}}{(100 - P_b)}$$

Where:

 $\begin{array}{ll} M_{binder} & = & Mass \ of \ a sphalt \ binder \ to \ be \ added \ to \ the \ prepared \ test \ sample \\ P_b & = & Required \ percent \ a sphalt \ binder \\ M_{agg} & = & Mass \ of \ hot \ test \ sample \\ \end{array}$ 

# Mixes with RAP

Determine the mass of asphalt binder in the RAP:

$$M_{RAP\ binder} = M_{RAP} imes rac{P_{bRAP}}{100}$$

Where:

| $M_{RAP}$ binder  | = | Mass of asphalt binder in the RAP    |
|-------------------|---|--------------------------------------|
| Mrap              | = | Mass of RAP in sample                |
| P <sub>bRAP</sub> | = | Percent of asphalt binder in the RAP |

Determine the amount of asphalt binder to be added to mixes with RAP:

$$M_{binder} = \left[ P_b \times \frac{\left( M_{agg} + M_{RAP} - M_{RAP \ binder} \right)}{(100 - P_b)} \right] - M_{RAP \ binder}$$

# **Asphalt Binder**

# Anti-stripping agent mass

$$M_{additive} = \% additive \times M_{binder}$$
  
 $M_{additive} = 0.25\% \times 850 \ g = 2.1 \ g$ 

Given:

% additive = 0.25%M binder = 850 g.

TM14 short 19

FOP Library - 8

#### WAQTC

TM 14

#### Asphalt binder mass - mixtures without RAP

$$M_{binder} = \frac{P_b \times M_{agg}}{(100 - P_b)}$$

$$M_{binder} = \frac{6.0\% \times 4500.0 \ g}{(100\% - 6.0\%)} = \frac{2700.0 \ g}{94.0\%} = 287.2 \ g$$

Given:

 $P_b = 6.0 \%$  from JMF  $M_{agg} = 4500.0$  g hot aggregate

*Note 13:* A factor can be determined for subsequent specimens by taking  $P_b$  divided by 100- $P_b$ . Then the hot aggregate mass is multiplied by this factor for an expedient oil add determination.

#### Asphalt binder mass – mixtures with RAP

Determine mass of asphalt binder in RAP:

$$M_{RAP \ binder} = M_{RAP} \times \frac{P_{bRAP}}{100}$$
$$M_{RAP \ binder} = 1125.0 \ g \ x \ \frac{4.88\%}{100} = 54.9 \ g$$

л

Given:

$$M_{RAP} = 1125.0 \text{ g}$$
  
 $P_{b RAP} = 4.88\%$ 

Determine mass of asphalt binder:

$$M_{binder} = \left[ P_b \times \frac{\left( M_{agg} + M_{RAP} - M_{RAP \ binder} \right)}{(100 - P_b)} \right] - M_{RAP \ binder}$$
$$Mass_{binder} = \left[ 6.0\% \times \frac{(4500 \ g - 54.9 \ g)}{(100\% - 6.0 \ \%)} \right] - 54.9 \ g = 228.8 \ g$$

TM14 short 19

FOP Library - 9

WAQTC

# **Check of Calculation**

$$\left[\frac{(54.9g + 228.8g)}{(4500g + 228.8g)}\right] x \ 100 = 6.0\%$$

# Report

- Project name
- Date of batching
- Specimen identification
- Virgin aggregate mass
- RAP mass, if required
- Percentage of asphalt binder in specimen, nearest 0.1 percent
- Asphalt binder mass
- Anti-Strip mass, if applicable
- Conditioning process

TM14\_short\_19

FOP Library - 10

# APPENDIX—AGGREGATE BATCHING

(Non-Mandatory Information)

The following guidelines should be considered when batching virgin aggregates that have small amounts of retained material that are encountered during the separation phase and will reduce the number of containers required for material storage:

- The percent retained for the sieve to be moved is less than 10 percent. Material meeting this condition must have a retained like size on the next stockpile or batching of the separated size will be required.
- Stockpiles to be combined are from the same source and same parent material. Aggregates from different sources should not be combined.
- The particle shape and texture are essentially the same for the sieve sizes to be combined.

Stockpiles are produced using similar processes (e.g. do not mix stockpiles of crushed material with stockpiles of uncrushed material; do not mix unwashed stockpiles with washed stockpiles, etc.).

# Example

Batch a gyratory sample of 4750 g. of asphalt mixture, the aggregate portion will be about  $\underline{4500 \text{ g}}$ . The mixture is to have 25 percent RAP with three virgin stockpiles of 18, 27, and 30 percent.

#### Batch Mass for the 12.5 to 4.75 mm (1/2 in. to No. 4) stockpile

*Required mass* = 
$$4500 g \times \frac{18\%}{100} = 810.0 g$$

| Stockpile         | 12.5 to 4.75 mm<br>(1/2 in. to No. 4) | 4.75 to 1.18 mm<br>(No. 4 to No. 8) | 4.75 to 1.18 mm<br>(No. 4 to No. 8) | RAP      |
|-------------------|---------------------------------------|-------------------------------------|-------------------------------------|----------|
| Cold feed %       | 18%                                   | 27%                                 | 30%                                 | 25%      |
| <b>Batch Mass</b> | 810.0 g.                              | 1215.0 g                            | 1350.0 g                            | 1125.0 g |

The sum of the batch masses must add up to the original aggregate target mass, in this example: 810.0 g + 1215.0 g + 1350.0 g + 1125.0 g = 4500.0 g.

FOP Library - 11

#### WAQTC TM 14 (19)

| WAOTC | ı |
|-------|---|
| WAQIC | ٢ |

| Sieve Size<br>mm (in.)   | %Retained | Batch<br>Mass<br>g | Mass<br>Carried to<br>Next Pile<br>g | Cumulative<br>Batch Mass<br>g |
|--------------------------|-----------|--------------------|--------------------------------------|-------------------------------|
| 25 (1)                   | 0.0       | 0.0                | 0.0                                  | 0.0                           |
| 19.0 (3/4)               | 0.0       | 0.0                | 0.0                                  | 0.0                           |
| 12.5 (1/2)               | 3.3       | 26.7               | 0.0                                  | 26.7                          |
| 9.5 (3/8)                | 49.4      | 400.1              | 0.0                                  | 426.8                         |
| 6.25 (1/4)               | 39.8      | 322.4              | 0.0                                  | 749.2                         |
| 4.75 (No. 4)             | 3.5       | 28.4               | -28.4                                |                               |
| 2.36 (No. 8)             | 1.7       | 13.8               | -13.8                                |                               |
| 1.18 (No. 16)            | 0.2       | 1.6                | -1.6                                 |                               |
| 0.600 (No.<br>30)        | 0.0       | 0.0                | 0.0                                  |                               |
| 0.300 (No.<br>50)        | 0.1       | 0.8                | -0.8                                 |                               |
| 0.150 (No.<br>100)       | 0.0       | 0.0                | 0.0                                  |                               |
| 0.075 (No.<br>200)       | 0.0       | 0.0                | 0.0                                  |                               |
| Minus 0.075<br>(No. 200) | 2.0       | 16.2               | -16.2                                |                               |
| Total                    | 100.0     | 810.0              | -60.8                                |                               |

Mass per sieve for 12.5 to 4.75 mm (1/2 in. to No. 4) stockpile

The %Retained column must equal 100.0 percent. The Batch Mass Column should equal 810.0 g.

The Total Batch Mass plus the Mass Carried to Next Pile for sieves smaller than the 6.25 mm (1/4 in.) is 810.0 g + (-60.8 g) = 749.2 g.

The minus sign shows mass is being removed from this portion of the Batch Plan. It will be added to the next (pile plus sign).

*Note 12:* Carrying minor amounts of material when batching as in this example reduces the number of fractionated sizes. In case, there are eight less bins from just this stockpile.

The material retained on the 12.5 mm (1/2 in) was 3.3 % and meets the less than 10 percent requirement but doesn't have a like material in the next stockpile, so it must be batched.

Continue with the next stockpile, 4.75 to 1.18 mm (No. 4 to No. 8).

FOP Library - 12

Pub. October 2021

FOP LIBRARY

| WAQTC TM 14 ( | 19 | ) |
|---------------|----|---|
|---------------|----|---|

| Sieve Size<br>mm (in.) | %Retained | Batch Mass<br>g | Mass Carried to<br>Next Pile<br>g | Cumulative Batch<br>Mass<br>g |
|------------------------|-----------|-----------------|-----------------------------------|-------------------------------|
| 25 (1)                 | 0.0       | 0.0             | 0.0                               |                               |
| 19.0 (3/4)             | 0.0       | 0.0             | 0.0                               | 749.2                         |
| 12.5 (1/2)             | 0.0       | 0.0             | 0.0                               |                               |
| 9.5 (3/8)              | 1.3       | 15.8            | 0.0                               | 765.0                         |
| 6.25 (1/4)             | 29.5      | 358.4           | 0.0                               | 1123.4                        |
| 4.75 (No. 4)           | 28.4      | 345.1 + 28.4    | 0.0                               | 1496.9                        |
| 2.36 (No. 8)           | 32.4      | 393.7 + 13.8    | 0.0                               | 1904.4                        |
| 1.18 (No. 16)          | 4.1       | 49.8 + 1.6      | -51.4                             |                               |
| 0.600 (No. 30)         | 1.1       | 13.4 + 0.0      | -13.4                             |                               |
| 0.300 (No. 50)         | 0.6       | 7.3 + 0.8       | -8.1                              |                               |
| 0.150 (No. 100)        | 0.3       | 3.6 + 0.0       | -3.6                              |                               |
| 0.075 (No. 200)        | 0.0       | 0.0 + 0.0       | 0.0                               |                               |
| Minus 0.075            | 2.3       | 27.9 + 16.2     | -44.1                             |                               |
| (No. 200)              |           |                 |                                   |                               |
| Total                  | 100.0     | 1215.0 + 60.8   | -120.6                            |                               |

Mass per sieve for 4.75 to 1.18 mm (No. 4 to No. 8) stockpile

%Retained equals 100.0, the batch mass equals the 1215.0 g. with 60.8 g. being carried from the 12.5 to 4.75 mm (1/2 in. to No. 4).

| Sieve Size<br>mm (in.) | Adjusted<br>QL<br>%Retained | Batch Mass<br>g | Cumulative<br>Batch Mass<br>g |
|------------------------|-----------------------------|-----------------|-------------------------------|
| 25 (1)                 | 0.0                         | 0.0             |                               |
| 19.0 (3/4)             | 0.0                         | 0.0             |                               |
| 12.5 (1/2)             | 0.0                         | 0.0             | 1904.4                        |
| 9.5 (3/8)              | 0.0                         | 0.0             |                               |
| 6.25 (1/4)             | 0.0                         | 0.0             |                               |
| 4.75 (No. 4)           | 0.2                         | 2.7             | 1907.1                        |
| 2.36 (No. 8)           | 20.2                        | 272.7           | 2179.8                        |
| 1.18 (No. 16)          | 26.5                        | 357.8 + 51.4    | 2589.0                        |
| 0.600 (No. 30)         | 17.1                        | 230.8 + 13.4    | 2833.2                        |
| 0.300 (No. 50)         | 14.8                        | 199.8 + 8.1     | 3041.1                        |
| 0.150 (No. 100)        | 11.9                        | 160.7 + 3.6     | 3205.4                        |
| 0.075 (No. 200)        | 2.8                         | 37.8 + 0.0      | 3243.2                        |
| Minus 0.075            | 6.5                         | 87.7 + 44.1     | 3375.0                        |
| (No. 200)              |                             |                 |                               |
| Total                  | 100.0                       | 1350.0 + 120.6  |                               |

Mass per sieve for 44.75 to 1.18 mm (No. 4 to No. 8) stockpile

The final Cumulative Batch Mass matches the sum of the three virgin stockpiles, 810.0 + 1215.0 + 1350.0 = 3375.0.

TM14 short 19

FOP Library - 13

WAQTC

WAQTC TM 14 (19)

TM14\_short\_19

FOP Library - 14

Pub. October 2021

Page 14 of 18

WSDOT Materials Manual M 46-01.40 January 2022

# Performance Exam Checklist Laboratory Prepared Asphalt Mixture Specimens

# WAQTC TM 14

| Parti | cipant Name Exam Date                                                                                                                          |         |         |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|
| Reco  | ord the symbols "P" for passing or "F" for failing on each step of the checklist.                                                              |         |         |
| Proc  | edure Element                                                                                                                                  | Trial 1 | Trial 2 |
| 1.    | The tester has a copy of the current procedure on hand?                                                                                        |         |         |
| 2.    | All equipment is functioning according to the test procedure, and if required, has the current calibration/standardization/check tags present? |         |         |
| 3.    | Representative samples of aggregate identified on JMF obtained per FOP for AASHTO R 90?                                                        |         |         |
| 4.    | Representative samples of asphalt binder identified on JMF obtained per FOP for AASHTO R 66?                                                   |         |         |
| 5.    | If required, hydrated lime obtained from supplier?                                                                                             |         |         |
| 6.    | If required, anti-stripping agent obtained from supplier?                                                                                      |         |         |
| 7.    | If required, representative samples of recycled material (RAP, RAS) sufficient for production use obtained per FOP for AASHTO R 90?            |         |         |
| Agg   | regate Preparation                                                                                                                             |         |         |
| 8.    | Aggregate dried according to FOP for AASHTO T 255?                                                                                             |         |         |
| 9.    | Aggregate separated into individual size fractions according to FOP for AASHTO T 27_T 11?                                                      |         |         |
| 10.   | Material retained on each sieve placed in separate containers?                                                                                 |         |         |
| 11.   | Separated aggregates washed, except the portion passing the No. 200 (0.075 mm) sieve, in accordance with FOP for AASHTO T 27_T 11?             |         |         |
| 12.   | Washed aggregate samples dried according to FOP for AASHTO T 255?                                                                              |         |         |
| 13.   | If required, recycled material (RAP, RAS) dried overnight or to constant mass at 125 ± 5°F?                                                    |         |         |
| 14.   | All dried and cooled material stored as necessary to prevent moisture absorption?                                                              |         |         |

Page 16 of 18

| Proc | edure Element                                                                                                       | Trial 1 | Trial 2 |
|------|---------------------------------------------------------------------------------------------------------------------|---------|---------|
| Mix  | ing Preparation                                                                                                     |         |         |
| 15.  | Aggregate batch plan developed off JMF and calculated based on cumulative totals?                                   |         |         |
| 16.  | Number of samples at desired sample size determined by the specific test procedure to be performed?                 |         |         |
| 17.  | Mixing equipment (bowls, mixing paddles, spoons/scrapers, etc.) heated?                                             |         |         |
| 18.  | Aggregate heated 20°F above JMF mixing temperature?                                                                 |         |         |
| 19.  | If required, RAP material carefully heated for approximately 2 hrs. at 230 $\pm$ 9°F?                               |         |         |
| 20.  | Asphalt binder heated 10°F above JMF mixing temperature?                                                            |         |         |
| 21.  | If required, liquid anti-stripping agent incorporated as instructed by supplier or as defined in step 4. a) – k)?   |         |         |
| Mix  | ing Procedure                                                                                                       |         |         |
| 22.  | A prepared specimen used to butter all mixing equipment and discarded?                                              |         |         |
| 23.  | Mass of buttered bowl and paddle recorded?                                                                          |         |         |
| 24.  | Heated aggregate introduced into tared empty bowl and mixed thoroughly?                                             |         |         |
| 25.  | Mass of aggregate recorded?                                                                                         |         |         |
| 26.  | If required, RAP material introduced with heated aggregate and mixed thoroughly?                                    |         |         |
| 27.  | Mass of RAP recorded?                                                                                               |         |         |
| 28.  | Crater formed?                                                                                                      |         |         |
| 29.  | Scale tared and calculated mass of asphalt binder added?                                                            |         |         |
| 30.  | All material thoroughly mixed for a minimum of two minutes or until completely coated?                              |         |         |
| 31.  | All mixture placed into pan and mixing equipment scraped back to buttered condition?                                |         |         |
| 32.  | Mass of empty bowl and paddle recorded and not more than 0.10 percent of total sample mass has been gained or loss? |         |         |
| 33.  | If required, mixture specimen aged according to AASHTO R 30?                                                        |         |         |
| 34.  | Steps repeated for each specimen to be mixed?                                                                       |         |         |
| 35.  | All calculations performed correctly?                                                                               |         |         |

| Tester qualified in   | performing TM14 Gyratory  | v samples.           | Date:   |
|-----------------------|---------------------------|----------------------|---------|
| Tester qualified in   | performing TM14 including | g RAP/RAS.           | Date:   |
| Tester qualified in   | performing TM14 HWTD/     | IDT/Ideal CT.        | Date:   |
| Tester qualified in   | performing TM14 to includ | le Anti-strip.       | Date:   |
| Tester qualified in   | performing TM14 Rice sam  | iples.               | Date:   |
| Tester qualified in   | performing TM14 IFCF san  | nples.               | Date:   |
| First Attempt: Pass   | Fail                      | Second Attempt: Pass | Fail    |
| Signature of Examiner |                           | WA                   | AQTC #: |
| Comments:             |                           |                      |         |

# WSDOT Errata to WAQTC TM 15

# Laboratory Theoretical Maximum Dry Density of Granular Soil and Soil/Aggregate

WAQTC TM 15 has been adopted by WSDOT with the following changes:

### Sample Preparation

Replace step one with below:

1. Obtain a representative sample according to Table 3 below.

| Table 3<br>TM15 Sample Size          |           |              |
|--------------------------------------|-----------|--------------|
|                                      | Minimum I | Mass Ib (kg) |
| If no more than 15 percent by weight | 210       | 95           |
| of aggregate exceeds 19 mm (¾ in.)   | 210       | 75           |
| If 15 percent or more by weight of   | 330       | 150          |
| aggregate exceeds 19 mm (¾ in.)      | 330       | 150          |

# **Theoretical Maximum Density Curve Development**

Replace with below:

WSDOT Employees – Enter laboratory data into MATS to develop the maximum density chart and maximum density curve.

Non-WSDOT Employees – Enter laboratory data into WAQTC spreadsheet to develop the maximum density chart and maximum density curve. Spreadsheet available at http://waqtc.org/library/library.cfm

#### WAQTC

### LABORATORY THEORETICAL MAXIMUM DRY DENSITY OF GRANULAR SOIL AND SOIL/ AGGREGATE WAQTC TM 15

# Scope

This method is used to establish the theoretical maximum dry density of granular and nongranular soil-aggregate. Use Procedure 1 for material with more than 30 percent retained on the 4.75 mm (No. 4) sieve or Procedure 2 for material with more than 30 percent retained on the 19.0 mm ( $\frac{3}{4}$  in.) sieve.

# Terminology

- Fine aggregate portion material passing the 4.75 mm (No. 4) Sieve.
- Coarse aggregate portion material retained on the 4.75 mm (No. 4) sieve.

# Significance

A theoretical maximum dry density chart and curve are developed by determining a laboratory maximum dry density of a representative sample of material passing the 4.75 mm (No. 4) and the material retained on the 4.75 mm (No. 4), and their respective apparent specific gravities ( $G_{ab}$ ). The theoretical maximum dry density chart and curve address the range of theoretical maximum dry densities due to fluctuations in coarse and fine aggregate of a given material.

To determine the laboratory maximum dry density of the fine aggregate portion, this method allows for use of the FOP for AASHTO T 99/T 180 or by vibratory compactor covered in the method.

This method is for use on granular materials having 30 to 70 percent passing the 4.75 mm (No. 4) or 19.0 mm (3/4 in.) sieve.

# Apparatus

- A vibratory spring-loaded compactor D G Parrott & Son Humphres Maximum Density machine, or equivalent.
- Molds: solid wall rigid inflexible metal cylinders.
  - Small mold: volume approximately 0.003 m<sup>3</sup> (0.1 ft.<sup>3</sup>) with an inside diameter of 150 mm  $\pm$  5 mm (6  $\pm$  0.15 in.) and a height of 200  $\pm$  5 mm (8  $\pm$  0.1 in.) with base.
  - Large mold: volume approximately 0.014 m<sup>3</sup> (0.5 ft.<sup>3</sup>) with a height 85 to 150 percent of the inside diameter.
- Cap: rigid, inflexible metal cap fitting inside the mold with 1.5 mm (1/16 in.) max. space between piston and mold wall.
- Spacer blocks: of varying heights compatible with the compactor and pistons.

TM15 short 20

FOP Library -1

# WAQTC

TM 15

- Measuring device: minimum length 150 mm (6 in.), accurate and readable to 2.5 mm (0.01 in.)
- Sieves: 75 mm (3 in.), 19 mm (<sup>3</sup>/<sub>4</sub> in.), and a 4.75 mm (No. 4) conforming to the FOP for AASHTO T 27/T 11
- Balance or Scale: Capacity sufficient for the principle sample mass, readable to 0.1 percent or 0.1 g, and meeting the requirements of AASHTO M 231
- Tamping rod: straight steel, 16 mm (5/8 in.) in diameter and approximately 400 mm (24 in.) long having at least one end rounded to a hemispherical tip
- Straight edge: at least 25 mm (1 in.) longer than the diameter of the mold
- A stopwatch or timer readable to 1 second

# **Determining Laboratory Maximum Dry Density**

Select the proper method for determining the laboratory maximum dry density of the fine aggregate portion of the sample, refer to Table 1, or as directed by the agency.

Select the proper method for determining the laboratory maximum dry density of the coarse aggregate portion of the sample, refer to Table 2.

| Estimated Soil Type                                          | Recommended Test Method                                                              |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Sandy, non-plastic, permeable soil or non-<br>cohesive soil. | WAQTC TM 15 Vibratory Compactor                                                      |
| Silt, some plasticity, low permeability.                     | FOP for AASTHO T 99/T 180, T 99<br>Method A                                          |
| Sandy/silt, some plasticity, permeable.                      | WAQTC TM 15 and FOP for AASHTO<br>T 99/T 180, T 99 Method A<br>(use highest results) |

Table 1Fine Aggregate Portion Laboratory Maximum Dry Density Method

# WAQTC

# Table 2Coarse Aggregate Portion Laboratory Maximum Dry Density Method

| Coarse Aggregate Amount                                                                                                                     | Test Method                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| No more than 15 percent by weight of the original aggregate specimen exceeds 19 mm ( $\frac{3}{4}$ in.)                                     | WAQTC TM 15 Vibratory<br>Compactor Procedure 1 |
| 15 percent or more by weight of the original aggregate specimen is greater than 19 mm ( $\frac{3}{4}$ in) but does not exceed 75 mm (3 in.) | WAQTC TM 15 Vibratory<br>Compactor Procedure 2 |

# Sample Preparation

- 1. Obtain a representative sample according to the FOP for AASHTO R 90, minimum 180 kg. (400 lbs.).
- 2. Reduce according to the FOP for AASHTO R 76 to a sufficient size to yield amounts required in steps 7 and 8.
- 3. If the sample is damp, dry until it becomes friable under a trowel. Drying may be in air or by use of a drying apparatus maintained at a temperature not exceeding 60°C (140°F).
- 4. Thoroughly break up aggregations in a manner that avoids reducing the natural size of individual particles.
- 5. Remove the material retained on the 75 mm (3 in.) sieve.
- 6. Separate into coarse and fine aggregate portions by passing the remainder of the sample through the 4.75 mm (No. 4) sieve.
- 7. Fine aggregate
  - a. Obtain a representative sample as described in the FOP for AASHTO T 99/T 180, T 99 Method A, or
  - b. Obtain at least three representative test samples of approximately 6 kg (13 lb.) each for the fine aggregate vibratory compactor method.
- 8. Coarse aggregate obtain a representative sample for one of the following:
  - a. 19 mm (<sup>3</sup>/<sub>4</sub> in) to 4.75 mm (No. 4) approximately 5 kg (11 lb.) for coarse aggregate vibratory compactor Procedure 1; or
  - b. 75 mm (3 in) to 4.75 mm (No. 4) approximately 20 kg (45 lb.) for coarse aggregate vibratory compactor Procedure 2.

TM 15

WAQTC TM 15

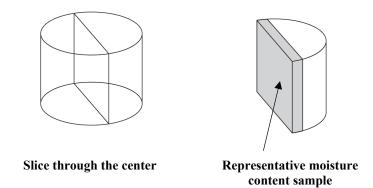
# Laboratory Maximum Dry Density of Fine Aggregate Portion

Determine laboratory maximum dry density of the fine aggregate portion according to the FOP for AASHTO T 180/T 99, T 99 Method A, or the following vibratory compactor method. Refer to Table 1.

# Vibratory Compactor Method

- 1. Determine and record the mass of the clean dry small mold to the nearest 5 g (0.01 lb.). Designate this mass as the  $M_m$ .
- 2. Add enough water to one of the fine aggregate portions to saturate the sample, approximately optimum moisture. Do not over saturate (Note 1).
- *Note 1:* The sample is considered saturated when one to two drops of free water are visible at the base of the mold at the end of the first 2-minute load cycle, Table 3. Refer to Step 11.
- 3. Mix until homogenous.
- 4. Place approximately one third of the sample in the mold.
- 5. Consolidate with 25 strokes of the tamping rod, distribute evenly over the surface, and 25 blows of the manually operated rammer.
- 6. Repeat Steps 4 and 5 for two subsequent lifts. The surface of the top lift should be finished as level as possible.
- 7. Place the cap on top of the molded specimen and mount the mold on the jack platform in the compactor. Use spacers between the load spring assembly and cap to adjust the elevation of the mold so the hammers strike near the center of the mass of material in the mold.
- 8. Elevate the mold with the jack until the load spring assembly seats on top of the cap and apply an initial seating load of approximately 100 lbf. on the sample.
- 9. Start the compactor hammers. Continue to elevate the mold, applying the load gradually over the time stated in the Table 3.

| Load Application Rate |         |
|-----------------------|---------|
| Load lb <sub>f</sub>  | Time    |
| 0 to 500              | 1 min.  |
| 500 to 1,000          | 30 sec. |
| 1,000 to 2,000        | 30 sec. |


Table 3

10. Upon reaching 2,000 lbf at the end of the 2-minute cycle, stop the hammer, release the load on the jack, and return to zero pressure.

TM15 short 20

FOP Library -4

- 11. Determine apparent moisture.
  - a. If the material is pumping around the mold cap or excessive amounts of water are seeping from the mold, prepare a new sample and begin the test again at Step 1.
  - b. If the base of the mold is dry or there is a small amount of water, repeat Steps 7 through 10, four additional times.
- 12. Remove the mold assembly from the compactor.
- 13. Measure the height of the compacted specimen.
  - a. Lay the straight edge across the mold.
  - b. Using the measuring device, measure from the bottom of the straight edge to the top of the cap and spacers to the nearest 0.1 mm (0.01 in.). Designate as D.
  - c. Calculate and record the height, h<sub>s</sub>, of the compacted specimen, subtract D and the T, from Annex A, from the height of the mold.
- 14. Determine and record the mass of the mold and specimen,  $M_{ms}$ , to the nearest 5 g (0.01 lb.).
- 15. Determine and record the mass of the specimen, Ms, by subtracting Mm from Mms.
- 16. Remove the specimen from the mold.
- 17. Use the entire specimen for a moisture content sample or obtain a representative sample by slicing vertically through the center of the specimen. Obtain at least 500 g. (1.1 lb.) from one of the cut faces, ensuring that all the layers are represented. If a vertical face does not exist, take a representative sample.



- 18. Determine and record the moisture content, w, according to the FOP for AASHTO T 255/T 265.
- 19. Calculate and record the wet density,  $\rho_{w},$  of the fine aggregate portion.

TM15 short 20

FOP Library -5

Pub. October 2021

WSDOT Materials Manual M 46-01.40 January 2022

20. Calculate and record the laboratory dry density,  $\rho_d$ , of the fine aggregate portion.

# Laboratory Maximum Dry Density of the Coarse Portion

# Vibratory Compactor Method

*Note 2:* Procedure 1 uses the small mold, this procedure is not recommended for material with aggregate larger than 9.3 mm (3/4 in.).

# **Procedure 1**

- 1. Determine and record the mass of the small mold to the nearest 5 g (0.01 lb.). Designate this mass as the  $M_m$ .
- 2. Determine and record the mass of the coarse aggregate portion to the nearest 5 g (0.01 lb.). Designate this mass as the M<sub>s</sub>. See Note 3.
- *Note 3:* If all the coarse aggregate portion does not fit in the mold or there is some indication that material may have been lost, perform alternate Step 15 to determine  $M_s$ .
- 3. Determine amount of water to add to the coarse aggregate portion by multiplying the mass determined in Step 2 by 0.025 (2.5 percent).
- 4. Add water to coarse aggregate portion, mix thoroughly.
- 5. Place approximately one third of the sample in the mold.
- 6. Tamp the surface lightly with the manually operated rammer to consolidate material and achieve a level surface.
- 7. Repeat Steps 5 and 6 for two subsequent lifts. Ensure all of the coarse aggregate portion is placed in the mold.
- 8. Place the cap on top of the molded specimen and mount the mold on the jack platform in the compactor. Use spacers between the load spring assembly and cap to adjust the elevation of the mold so the hammers strike near the center of the mass of material in the mold.
- 9. Elevate the mold with the jack until the loading spring assembly seats on top of the cap and spacers.
- 10. Apply an initial seating load of approximately 100 lbf on the sample.
- 11. Start the compactor hammers. Continue to elevate the mold, applying the load gradually over the time stated in the Table 3.
- 12. Upon reaching the 2,000 lbf load at the end of the 2-minute cycle, stop the hammer, release the load on the jack, and return to zero pressure.
- 13. Repeat Steps 10 through 12 four additional times.

- 14. Remove the mold assembly from the compactor.
- 15. Measure the height of the compacted specimen.
  - a. Lay the straight edge across the mold.
  - b. Using the measuring device, measure from the bottom of the straight edge to the top of the cap and spacers to the nearest 0.1 mm (0.01 in.). Designate as D.
  - c. Calculate and record the height of the compacted specimen,  $h_s$ , by subtracting D and T (thickness of the cap) from the height of the mold  $h_m$ . See Annex A.
- 16. Alternate method of determining Ms
  - a. Remove the specimen from the mold.
  - b. Determine the dry mass according to the FOP for AASHTO T 255. Designate as Ms.
- 17. Calculate and record the laboratory dry density,  $\rho_d$ , of the coarse aggregate portion.

#### **Procedure 2**

- 1. Determine and record the mass of the large mold and cap to the nearest 5 g (0.01 lb.). Designate this mass as the  $M_m$ .
- 2. Determine and record the mass of the coarse aggregate portion to the nearest 5 g (0.01 lb.). Designate this mass as the M<sub>s</sub>.

*Note 4:* If all the coarse aggregate portion does not fit in the mold or there is some indication that material may have been lost, perform alternate Step 13 to determine  $M_s$ .

- 3. Place approximately one fifth of the sample in the mold.
- 4. Tamp the surface lightly with the manually operated rammer to consolidate material and achieve a level surface.
- 5. Place the cap on top of the molded specimen and mount the mold on the jack platform in the compactor. Use spacers between the load spring assembly and cap to adjust the elevation of the mold so the hammers strike near the center of the mass of material in the mold.
- 6. Elevate the mold with the jack until the loading spring assembly seats on top of the cap.
- 7. Apply an initial seating load of approximately 100 lbf on the sample.
- 8. Start the compactor hammers. Continue to elevate the mold, applying the load gradually over the time stated in the Table 3.
- 9. Upon reaching the 2,000 lbf load at the end of the 2-minute cycle, stop the hammer, release the load on the jack, and return to zero pressure.

FOP Library -7

# WAQTC

# WAQTC TM 15

- 10. Repeat Steps 3 through 9 four additional times. Ensure all of the coarse aggregate portion is placed in the mold on the final lift.
- 11. Remove the mold assembly from the compactor.
- 12. Measure the height of the compacted specimen.
  - a. Lay the straight edge across the mold.
  - b. Using the measuring device, measure from the bottom of the straight edge to the top of the cap and spacers to the nearest 0.1 mm (0.01 in.). Designate as D.
  - c. Calculate and record the height of the compacted specimen, h<sub>s</sub>, by subtracting D and T (thickness of cap) from the height of the mold, h<sub>s</sub>. See Annex A.
- 13. Alternate method of determining Ms
  - a. Remove the specimen from the mold.
  - b. Determine the dry mass of the specimen according to the FOP for AASHTO T 255. Designate as  $M_s$ .
- 14. Calculate and record the laboratory dry density,  $\rho_d$ , of the coarse aggregate portion.

# Apparent Specific Gravity of the Fine and Coarse Portions

- 1. Determine the apparent specific gravity, G<sub>ab</sub>, of the minus 4.75mm (No. 4) sieve according to AASHTO T 84 or Annex B.
- 2. Determine the apparent specific gravity, G<sub>ab</sub>, of the plus 4.75 mm (No. 4) sieve according to the FOP for AASHTO T 85 or Annex B.

TM15 short 20

WAQTC

# Calculations

Height of specimen in mold (fine or coarse aggregate portion)

$$h_s = h_m - D - T$$

where:

| hs                        | = | height of specimen in mold, 0.1 mm (0.01 in.)                               |
|---------------------------|---|-----------------------------------------------------------------------------|
| $\mathbf{h}_{\mathrm{m}}$ | = | height of mold, 0.1 mm (0.01 in.), Annex A                                  |
| D                         | = | measured distance from the mold top to the cap, 0.1 mm $(0.01 \text{ in.})$ |
| Т                         | = | thickness of the cap, 0.1 mm (0.01 in.), Annex A                            |

# Volume of the specimen in the mold (fine or coarse aggregate portion)

$$V_{s} = \frac{h_{s} \times \pi \times \left(\frac{d}{2}\right)^{2}}{1e^{9} mm^{3}/_{m^{3}} or \ 1728 \ in^{3}/_{ft^{3}}}$$

where:

volume of specimen in mold m<sup>3</sup> (ft<sup>3</sup>)
inside diameter of the mold, 0.1 mm (0.01 in.), Annex A

Mass of fine aggregate portion in the mold

 $V_s$ 

d

$$M_s = M_{ms} - M_m$$

where:

 $M_s$  = mass of specimen in mold, 0.005 kg (0.01 lb.)

 $M_{ms}$  = mass of mold and specimen, 0.005 kg (0.01 lb.)

 $M_m$  = mass of mold, 0.005 kg (0.01 lb.)

TM15 short 20

# WAQTC

#### WAQTC TM 15

# Wet Density of fine aggregate portion

$$\rho_w = \frac{M_s}{V_s}$$

Where:

 $\begin{array}{lll} \rho_w & = & \text{wet density, } \text{kg/m}^3 \ (\text{lb/ft}^3) \\ M_s & = & \text{mass of specimen in the mold, } 0.005 \ \text{kg} \ (0.01 \ \text{lb.}) \end{array}$ 

# Laboratory maximum dry density fine aggregate portion

$$\rho_d = \left(\frac{\rho_w}{w+100}\right) \times 100 \quad or \quad \rho_d = \frac{\rho_w}{\left(\frac{w}{100}\right) + 1}$$

Where:

# Laboratory maximum dry density of coarse aggregate portion

$$\rho_d = \left(\frac{M_s}{V_s}\right) \times 100$$

Where:

$$\rho_d = dry density, kg/m^3 (lb/ft^3)$$

$$M_s = mass of specimen in the mold, 0.005 kg (0.01 lb.)$$

$$V_s = volume of specimen in mold m^3 (ft^3)$$

| <b>XX7 A</b> | OTC  |
|--------------|------|
| W A          | UIU. |
|              |      |

# Example

FOP LIBRARY

# Example for small mold fine aggregate portion

| Wet mass, M <sub>w</sub>               | = | 6.470 kg (14.26 lb) |
|----------------------------------------|---|---------------------|
| Moisture content, w                    | = | 11.3%               |
| Height of mold, hm                     | = | 203.7 mm (8.02 in.) |
| Inside diameter of mold, d             | = | 153.4 mm (6.04 in.) |
| Measurement from top of mold to cap, D | = | 44.5 mm (1.75 in.)  |
| Thickness of the cap, T                | = | 3.6 mm (0.14 in.)   |
| Mass of specimen and mold, $M_{ms}$    | = | 6.400 kg (14.11 lb) |
| Mass of mold, M <sub>m</sub>           | = | 0.280 kg (0.62 lb)  |

# Height of fine aggregate portion in mold

 $h_s = h_m - D - T$ 

$$h_{\rm s} = 203.7 \, mm - 44.5 \, mm - 3.6 \, mm = 155.6 \, mm$$

$$h_{\rm s} = 8.02 \ in. - 1.75 \ mm - 0.14 \ in. = 6.13 \ in.$$

Volume of the fine aggregate in the mold

$$V_{s} = \frac{h_{s} \times \pi \times \left(\frac{d}{2}\right)^{2}}{1e^{9} mm^{3}/m^{3} \text{ or } 1728 \text{ in}^{3}/ft^{3}}$$

$$V_{s} = \frac{155.6 \ mm \ \times \pi \times \left(\frac{153.4 \ mm}{2}\right)^{2}}{1,000,000,000 \ mm^{3}/m^{3}} = 0.002876 \ m^{3}$$

Or

$$V_{s} = \frac{6.13 \text{ in. } \times \pi \times \left(\frac{6.04 \text{ in.}}{2}\right)^{2}}{1728 \text{ in}^{3}/_{ft^{3}}} = 0.1016 \text{ ft}^{3}$$

TM15\_short\_20
Page 12 of 26

# WAQTC

Mass of fine aggregate portion in the mold

$$M_{s} = M_{ms} - M_{m}$$
$$M_{s} = 6.400 \ kg \ -0.280 \ kg = 6.119 \ kg$$
$$M_{s} = 14.11 \ lb - 0.62 \ lb = 13.49 \ lb$$

Wet density of fine aggregate portion

$$\rho_w = \frac{M_s}{V_s}$$

$$\rho_w = \frac{6.119 \ kg}{0.002876 \ m^3} = 2128 \ kg / m^3$$

$$\rho_w = \frac{13.49 \, lb}{0.1016 \, ft^3} = 132.8 \ \frac{lb}{ft^3}$$

Where:

$$\rho_w$$
 = wet density, kg/m<sup>3</sup> (lb/ft<sup>3</sup>)  
M<sub>s</sub> = mass of specimen in the mold

TM15 short 20

WAQTC

Laboratory maximum dry density of the fine aggregate portion

$$\rho_d = \left(\frac{\rho_w}{w+100}\right) \times 100 \quad or \quad \rho_d = \frac{\rho_w}{\left(\frac{w}{100}\right) + 1}$$

$$\rho_d = \left(\frac{2128 \, kg/m^3}{11.3\% + 100}\right) \times 100 = 1912 \, kg/m^3 \ \rho_d = \left(\frac{132.8 \, lb/ft^3}{11.3\% + 100}\right) \times 100 = 119.3 \, lb/ft^3$$

Or

$$\rho_d = \left(\frac{2128 \, kg/m^3}{\frac{11.3\%}{100} + 1}\right) = 1912 \, kg/m^3 \ \rho_d = \left(\frac{132.8 \, lb/ft^3}{\frac{11.3\%}{100} + 1}\right) = 119.3 \, lb/ft^3$$

#### Example for small mold coarse aggregate portion (Procedure 1)

Calculations will be the same for Procedure 2

| Height of mold, hm                       | = | 203.7 mm (8.02 in.) |
|------------------------------------------|---|---------------------|
| Inside diameter of mold, d               | = | 153.4 mm (6.04 in.) |
| Measurement from top of mold to cap, D   | = | 42.4 mm (1.67 in.)  |
| Thickness of the cap, T                  | = | 3.6 mm (0.14 in.)   |
| Mass of coarse aggregate in the mold, Ms | = | 4.985 kg (10.99 lb) |

## Height of coarse aggregate portion in mold

$$h_s = h_m - D - T$$

 $h_s = 203.7 mm - 42.4 mm - 3.6 mm = 157.7 mm$ 

 $h_s = 8.02 \text{ in.} -1.67 \text{ in.} -0.14 \text{ in.} = 6.21 \text{ in.}$ 

TM15 short 20

Pub. October 2021

# WAQTC

Volume of the coarse aggregate portion in the mold

$$V_{s} = \frac{h_{s} \times \pi \times \left(\frac{d}{2}\right)^{2}}{1e^{9} \, mm^{3} / m^{3} \, or \, \frac{1728 \, in^{3}}{ft^{3}}}$$

$$V_{s} = \frac{157.7 \ mm \times \pi \times \left(\frac{153.4 \ mm}{2}\right)^{2}}{1,000,000,000 \ mm^{3}/m^{3}} = 0.002915 \ m^{3}$$

$$V_{s} = \frac{6.21 \text{ in. } \times \pi \times \left(\frac{6.04 \text{ in.}}{2}\right)^{2}}{1728 \text{ in}^{3}/_{ft^{3}}} = 0.1030 \text{ ft}^{3}$$

Laboratory maximum dry density of coarse aggregate portion

$$\rho_d = \left(\frac{M_s}{V_s}\right) \times 100$$

$$\rho_d = \left(\frac{4.985 \ kg}{0.002915 \ m^3}\right) \times 100 = 1710 \ \frac{kg}{m^3}$$

$$\rho_d = \left(\frac{10.99 \ lb}{0.1030 \ ft^3}\right) \times 100 = 106.7 \ \frac{lb}{ft^3}$$

Where:

$$\rho_d = dry density, kg/m^3 (lb/ft^3)$$

$$M_s = mass of specimen in the mold, 0.005 kg (0.01 lb.)$$

$$V_s = volume of specimen in mold m^3 (ft^3)$$

Page 15 of 26

# **Theoretical Maximum Density Curve Development**

Enter the following data into an approved spreadsheet to develop the maximum density chart and maximum density curve.

- Laboratory maximum dry density,  $\rho_d$ , of the coarse aggregate portion to the nearest  $1 \text{ kg/m}^3 (0.1 \text{ lb/ft}^3)$
- Laboratory maximum dry density,  $\rho_d$ , of the fine aggregate portion to the nearest  $1 \text{ kg/m}^3 (0.1 \text{ lb/ft}^3)$
- Optimum moisture content to the nearest 0.1 percent if the FOP for AASTHO T 99/T 180, T 99 Method A was used for the fine portion.
- Coarse aggregate apparent specific gravity, G<sub>ab</sub>, to the nearest 0.001
- Fine aggregate portion apparent specific gravity, G<sub>ab</sub>, to the nearest 0.001

TM15 short 20

FOP Library -15

Pub. October 2021

Page 16 of 26

# WAQTC

# WAQTC TM 15

# Example

# **Theoretical Maximum Dry Density Chart**

| Density Cu<br>Pass #4 | Maximum | Pass #4 | Maximum |
|-----------------------|---------|---------|---------|
| 0.0                   | 104.8   | 31.0    | 133.7   |
| 1.0                   | 104.6   | 32.0    | 134.5   |
| 2.0                   | 106.4   | 33.0    | 135.2   |
| 3.0                   | 107.1   | 34.0    | 135.8   |
| 4.0                   | 107.9   | 35.0    | 136.4   |
| 5.0                   | 108.7   | 36.0    | 137.0   |
| 6.0                   | 109.5   | 37.0    | 137.5   |
| 7.0                   | 110.3   | 38.0    | 137.9   |
| 8.0                   | 111.1   | 39.0    | 138.3   |
| 9.0                   | 112.0   | 40.0    | 138.6   |
| 10.0                  | 112.8   | 41.0    | 138.9   |
| 11.0                  | 113.7   | 42.0    | 139.0   |
| 12.0                  | 114.5   | 43.0    | 139.2   |
| 13.0                  | 115.4   | 44.0    | 139.2   |
| 14.0                  | 116.4   | 45.0    | 139.2   |
| 15.0                  | 117.3   | 46.0    | 139.2   |
| 16.0                  | 118.2   | 47.0    | 139.1   |
| 17.0                  | 119.2   | 48.0    | 139.0   |
| 18.0                  | 120.2   | 49.0    | 138.8   |
| 19.0                  | 121.3   | 50.0    | 138.6   |
| 20.0                  | 122.3   | 51.0    | 138.3   |
| 21.0                  | 123.4   | 52.0    | 138.1   |
| 22.0                  | 124.5   | 53.0    | 137.8   |
| 23.0                  | 125.6   | 54.0    | 137.5   |
| 24.0                  | 126.8   | 55.0    | 137.1   |
| 25.0                  | 127.9   | 56.0    | 136.8   |
| 26.0                  | 129.0   | 57.0    | 136.4   |
| 27.0                  | 130.0   | 58.0    | 136.0   |
| 28.0                  | 131.0   | 59.0    | 135.7   |
| 29.0                  | 132.0   | 60.0    | 135.3   |
| 30.0                  | 132.8   | 61.0    | 135.0   |

| Density Curves |         |         |         |  |
|----------------|---------|---------|---------|--|
| Pass #4        | Maximum | Pass #4 | Maximum |  |
| 62.0           | 134.6   | 82.0    | 129.6   |  |
| 63.0           | 134.3   | 83.0    | 129.4   |  |
| 64.0           | 134.0   | 84.0    | 129.3   |  |
| 65.0           | 133.6   | 85.0    | 129.1   |  |
| 66.0           | 133.3   | 86.0    | 128.9   |  |
| 67.0           | 133.1   | 87.0    | 128.8   |  |
| 68.0           | 132.8   | 88.0    | 128.6   |  |
| 69.0           | 132.5   | 89.0    | 128.4   |  |
| 70.0           | 132.2   | 90.0    | 128.3   |  |
| 71.0           | 132.0   | 91.0    | 128.1   |  |
| 72.0           | 131.7   | 92.0    | 128.0   |  |
| 73.0           | 131.5   | 93.0    | 127.9   |  |
| 74.0           | 131.2   | 94.0    | 127.7   |  |
| 75.0           | 131.0   | 95.0    | 127.6   |  |
| 76.0           | 130.8   | 96.0    | 127.4   |  |
| 77.0           | 130.6   | 97.0    | 127.3   |  |
| 78.0           | 130.4   | 98.0    | 127.2   |  |
| 79.0           | 130.2   | 99.0    | 127.0   |  |
| 80.0           | 130.0   | 100.0   | 126.9   |  |
| 81.0           | 129.8   |         |         |  |

| <b>Control Points for Density Curves</b> |         |       |  |
|------------------------------------------|---------|-------|--|
| Pass #4                                  | Maximum | Loose |  |
| 0.0                                      | 104.8   | 87.6  |  |
| 20.5                                     | 122.8   | 99.6  |  |
| 27.4                                     | 130.4   | 103.8 |  |
| 42.5                                     | 139.1   | 105.4 |  |
| 61.1                                     | 134.9   | 96.7  |  |
| 100.0                                    | 126.9   | 81.9  |  |

## WAQTC





# Report

- Results on standard agency forms
- Sample ID
- Laboratory maximum dry density of the coarse aggregate portion to the nearest  $1 \text{ kg/m}^3 (0.1 \text{ lb/ft}^3)$
- Laboratory maximum dry density of the fine aggregate portion to the nearest 1 kg/m<sup>3</sup> (0.1 lb/ft<sup>3</sup>)
- Optimum moisture content to the nearest 0.1 percent (when using the FOP for AASTHO T 99/T 180, T 99 Method A for the fine aggregate portion)
- Coarse aggregate apparent specific gravity (G<sub>ab</sub>) to the nearest 0.001
- Fine aggregate apparent specific gravity (G<sub>ab</sub>) to the nearest 0.001
- Theoretical maximum dry density chart
- Theoretical maximum dry density curve

TM15 short 20

Pub. October 2021

TM 15

# ANNEX A STANDARDIZATION OF THE MOLD

(Mandatory Information)

# Apparatus

- Calipers having a range sufficient to measure the diameter of the measure being checked and readable to at least 0.1 mm (0.01 in.)
- Inside diameter caliper, 300 mm (12 in.) range
- Straight edge at least 25 mm (1 in.) larger than the mold
- Ruler readable to 0.1 mm (0.01 in.)

# Procedure

# Determine the height of the mold (h<sub>m</sub>)

- 1. Place the straight edge across the top of the mold.
- 2. Using the caliper measure from the bottom of the straight edge to the center mold to the nearest 0.1 mm (0.01 in.)
- 3. Turn the straight edge 90 degrees.
- 4. Repeat Step 2.
- 5. Average the two measurements.
- 6. Designate as hm

# Determine the thickness of the cap and spacers (T)

- 1. Place cap and spacers inside the mold.
- 2. Place the straight edge across the top of the mold.
- 3. Using the caliper measure from the bottom of the straight edge to the center of the top of the cap to the nearest 0.1 mm (0.01 in.).
- 4. Turn the straight edge 90 degrees.
- 5. Repeat Step 3.
- 6. Average the two measurements.
- 7. Subtract the average measurement from  $h_m$
- 8. Designate as T.

# Determine the inside diameter of the mold (d)

- 1. Using the caliper measure the inside diameter of the mold to the nearest 0.1 mm (0.01 in.).
- 2. Turn the mold 90 degrees.
- 3. Repeat Step 1.
- 4. Average the two measurements.

5. Designate as d.

# ANNEX B APPARENT SPECIFIC GRAVITY (Gab) DETERMINATION

# (Mandatory Information)

This procedure covers the determination of apparent specific of coarse and fine aggregate by means of a pycnometer. When the soil is composed of material both larger and smaller than the 4.75 mm (No. 4) sieve, the sample is separated on the 4.75 mm (No. 4) sieve.

# Apparatus

- Pycnometer: A flask or other suitable container in which the volume can be reproduced within ±0.1 ml. The volume of the flask shall be at least 50 percent greater than required for the test sample.
- Pycnometer / volumetric flask cover: A glass plate or a metal or plastic cover with a vented opening
- Balance: A balance of sufficient capacity, readable to 0.1 g. Meeting AASHTO M 231, Class G2.
- Oven: Capable of maintaining a temperature of  $110 \pm 5^{\circ}C (230 \pm 9^{\circ}F)$  for drying the specimens to a constant mass.
- Vacuum lid: A transparent lid with a suitable vacuum connection, with a vacuum opening to be covered with a fine wire mesh
- Vacuum: Capable of evacuating air from the container to a partial vacuum of 13.33 kPa (100 mmHg) or less absolute pressure
- Manometer or vacuum gauge: Capable of measuring the vacuum being applied at the source of the vacuum
- Water bath: A constant-temperature water bath (optional)
- Thermometers: Thermometric devices accurate to 0.5°C (1°F)
- Bleeder valve to adjust vacuum
- Timer

# Sample Preparation

- 1. Sample and reduce the aggregate in accordance with the FOPs for AASHTO R 90 and R 76.
- 2. Dry the sample sufficiently to obtain a clean separation of fine and coarse material in the sieving operation.
- 3. Sieve the sample in accordance with the FOP for AASHTO T 27/ T 11 over the 4.75 mm (No. 4) sieve.

# Coarse test sample

a. Split or quarter approximately 1000 g of material from the portion retained on the 4.75 mm (No. 4) sieve.

TM15 short 20

FOP Library -19

## WAQTC

TM 15

- b. Dry to constant mass according to the FOP for AASHTO T 255 at 110  $\pm 5^{\circ}C$  (230  $\pm 9^{\circ}F).$
- c. Cool to room temperature.

# Fine test sample

- a. Split or quarter approximately 500 g of material from the portion passing the 4.75 mm (No. 4) sieve.
- b. Dry to constant mass according to the FOP for AASHTO T 255/T 265 at 110  $\pm 5^{\circ}$ C (230  $\pm 9^{\circ}$ F).
- c. Cool to room temperature.

# Procedure

The procedure is performed on fine and coarse aggregate separately.

- 1. Determine and record the mass of the dry test sample. Designate as A.
- 2. Place the test sample in the pycnometer.
- 3. Add water at approximately  $20^{\circ}$ C ( $68^{\circ}$ F) until the pycnometer is about  $\frac{3}{4}$  full.
- 4. Connect the pycnometer to the vacuum system.
- 5. Apply partial vacuum, 30 mmHg or less absolute pressure, for  $20 \pm 1$  min.
- 6. Agitate the pycnometer and contents, either continuously by mechanical device or manually by vigorous shaking, at 2-minute intervals. This agitation facilitates the removal of entrapped air.
- 7. Release vacuum and disconnect the hoses.
- 8. Fill the pycnometer with water without reintroducing air. Water temperature should be maintained as close to  $20 \pm 0.5^{\circ}$ C ( $68 \pm 1^{\circ}$ F) as possible throughout the procedure.

*Note 1:* It may be necessary to place the pycnometer in a water bath for 10 minutes after the release of vacuum to stabilize at  $20 \pm 0.5$ °C ( $68 \pm 1$ °F).

- a. Metal pycnometer (coarse test sample only) Fill the pycnometer with to 20  $\pm 0.5$  °C (68  $\pm 1$  °F) water according to manufacturer's instructions and dry the outside.
- b. Glass pycnometer (fine or coarse test samples) Completely fill the pycnometer with to 20 ±0.5°C (68 ±1°F) water, slide the calibrated glass plate over the mouth of the pycnometer making sure there are no air bubbles trapped under the plate. Dry the outside.
- 9. Determine and record the mass of the pycnometer, sample, and water. Designate as C.

WAQTC

# Calculation

Calculate the Gab to three decimal places as follows:

$$G_{ab} = \frac{A}{A+B-C}$$

Where:

A = Mass of dry sample in air, g

B = Mass of pycnometer filled with water at 20°C (68°F), g, determined during the Standardization of Pycnometer procedure

C = Mass of pycnometer, water, and the test sample at to  $20 \pm 0.5^{\circ}$ C ( $68 \pm 1^{\circ}$ F), g

# **Coarse example:**

$$G_{ab} = \frac{2200.3 g}{2200.3 g + 7502.5 g - 8812.0 g} = 2.470$$

Given:

| А | = | 2200.3 g |
|---|---|----------|
| В | = | 7502.5 g |
| С | = | 8812.0 g |

# Report

- Report on standard agency forms.
- Report apparent specific gravities, G<sub>ab</sub>, to the nearest 0.001

TM15 short 20

Pub. October 2021

# WAQTC

# WAQTC TM 15

# Standardization of Pycnometer

The pycnometer shall be standardized periodically in conformance with procedures established by the agency.

- 1. Fill the pycnometer with water at approximately 20°C (68°F).
- 2. Place the metal or plastic cover, or a glass plate on the pycnometer and eliminate all air.
- *Note B1:* When using a metal pycnometer and cover, place the cover on the pycnometer and push down slowly, forcing excess water out of the hole in the center of the cover. Use care when filling the pycnometer to avoid reintroducing air into the water.
  - 3. Stabilize the pycnometer at  $20 \pm 0.5^{\circ}$ C ( $68 \pm 1^{\circ}$ F) for  $10 \pm 1$  min.
  - 4. Towel dry the outside of the pycnometer and cover.
  - 5. Determine and record the mass of the pycnometer, water, and lid.
  - 6. Repeat Steps 2 through 5 two more times for a total of three determinations.
  - 7. If the variation of the three masses is within 0.3 g, average the three masses. Designate as "B."
  - 8. If the variation of the masses is greater than 0.3 g, take corrective action and perform the "Standardization of Pycnometer" again.

Laboratory Theoretical Maximum Dry Density of Granular Soil and Soil/Aggregate

# WAQTC TM 15

| Parti | cipant Name Exam Date                                                                                                                                         | Exam Date |         |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|--|
| Rec   | ord the symbols "P" for passing or "F" for failing on each step of the checklist.                                                                             |           |         |  |
| Proc  | edure Element                                                                                                                                                 | Trial 1   | Trial 2 |  |
| 1.    | The tester has a copy of the current procedure on hand?                                                                                                       |           |         |  |
| 2.    | All equipment is functioning according to the test procedure, and if required has the current calibration/standardization/check and maintenance tags present? |           |         |  |
| San   | nple Preparation                                                                                                                                              |           |         |  |
| 3.    | A minimum of 180 kg. (400 lbs.) representative sample material obtained according to FOP for AASHTO R 90?                                                     |           |         |  |
| 4.    | Representative sample reduced according to FOP for AASHTO R 76 to yield the sample sizes for testing?                                                         |           |         |  |
| 5.    | If damp, sample dried at a temperature not exceeding 60°C (140°F)?                                                                                            |           |         |  |
| 6.    | Material retained on the 75 mm (3 in.) sieve removed?                                                                                                         |           |         |  |
| 7.    | Coarse and fine aggregate portions separated through the 4.75 mm (No. 4) sieve?                                                                               |           |         |  |
| Fine  | e Aggregate Portion                                                                                                                                           |           |         |  |
| 8.    | Proper test method selected based on Table 1?                                                                                                                 |           |         |  |
| 9.    | Mass of clean dry small mold determined to the nearest 5 g (0.01 lb.)?                                                                                        |           |         |  |
| 10.   | Enough water added to saturate sample and mixed until homogenous?                                                                                             |           |         |  |
| 11.   | Each lift consolidated with 25 strokes of tamping rod and 25 blows of manually operated rammer?                                                               |           |         |  |
| 12.   | Top lift finished as level as possible?                                                                                                                       |           |         |  |
| 13.   | Mold cap placed and spacers utilized so the hammers strike near the center of mass in the mold?                                                               | s<br>     |         |  |
| 14.   | Initial seating load of approximately 100 lbf applied?                                                                                                        |           |         |  |
| 15.   | Compaction begun and load application rate per Table 3 followed?                                                                                              |           |         |  |
| 16.   | Based on the determination of apparent moisture, compaction cycle repeated four additional times or a new sample is prepared and test restarted from Step 1.? |           |         |  |
| 17.   | Height of compacted specimen determined and recorded?                                                                                                         |           |         |  |
| 18.   | Mass of specimen determined and recorded?                                                                                                                     |           |         |  |
| 19.   | Moisture content determined and recorded?                                                                                                                     |           |         |  |

| Proc | edure Element                                                                                   | Trial 1 | Trial 2 |
|------|-------------------------------------------------------------------------------------------------|---------|---------|
| 20.  | Dry density determined?                                                                         |         |         |
| 21.  | Coarse Aggregate Portion                                                                        |         |         |
| 22.  | Proper test method selected based on Table 2?                                                   |         |         |
| Pro  | cedure 1                                                                                        |         |         |
| 23.  | Mass of clean dry small mold determined to the nearest 5 g (0.01 lb.)?                          |         |         |
| 24.  | Mass of coarse aggregate portion determined to the nearest 5 g (0.01 lb.)?                      |         |         |
| 25.  | Coarse aggregate mass multiplied by 0.025 to determine mass of water to be added?               |         |         |
| 26.  | Water and coarse aggregate mixed thoroughly?                                                    |         |         |
| 27.  | Each lift tamped lightly with manually operated rammer?                                         |         |         |
| 28.  | Mold cap placed and spacers utilized so the hammers strike near the center of mass in the mold? |         |         |
| 29.  | Initial seating load of approximately 100 lbf applied?                                          |         |         |
| 30.  | Compaction begun and load application rate per Table 3 followed?                                |         |         |
| 31.  | Compaction cycle repeated four additional times?                                                |         |         |
| 32.  | Height of compacted specimen determined and recorded?                                           |         |         |
| 33.  | Dry density determined?                                                                         |         |         |
| Pro  | cedure 2                                                                                        |         |         |
| 34.  | Mass of clean dry small mold determined to the nearest 5 g (0.01 lb.)?                          |         |         |
| 35.  | Mass of coarse aggregate portion determined to the nearest 5 g (0.01 lb.)?                      |         |         |
| 36.  | Approximately one fifth of the sample place in mold?                                            |         |         |
| 37.  | Lift tamped lightly with manually operated rammer to consolidate and level?                     |         |         |
| 38.  | Mold cap placed and spacers utilized so the hammers strike near the center of mass in the mold? |         |         |
| 39.  | Initial seating load of approximately 100 lbf applied?                                          |         |         |
| 40.  | Compaction begun and load application rate per Table 3 followed?                                |         |         |
| 41.  | Aggregate placement and compaction cycle repeated four additional times?                        |         |         |
| 42.  | Height of compacted specimen determined and recorded?                                           |         |         |
| 43.  | Dry density determined?                                                                         |         |         |

| Proc  | edure Elen                                                                                            | nent        |                                |                                                                                               | Trial 1 | Trial 2 |
|-------|-------------------------------------------------------------------------------------------------------|-------------|--------------------------------|-----------------------------------------------------------------------------------------------|---------|---------|
|       | -                                                                                                     |             | -                              | e and Coarse Portions According to Annex B<br>nd fine aggregate portions obtained, dried, and |         |         |
| 45.   | Mass of d                                                                                             | ry test sa  | ample(s) deterr                | nined and recorded?                                                                           |         |         |
| 46.   | Test samp                                                                                             | ole(s) plac | ed in pycnom                   | eter and 20°C (68°F) water added to about ¾ full?                                             |         |         |
| 47.   |                                                                                                       |             | plied to pycno<br>or manually? | meter and contents for $20 \pm 1$ min. and agitated by                                        |         |         |
| 48.   | Vacuum re                                                                                             | eleased a   | and pycnomete                  | er filled with water without reintroducing air?                                               |         |         |
| 49.   | P. Water stabilized at 20 $\pm$ 0.5°C (68 $\pm$ 1°F), pycnometer cover positioned, and outside dried? |             |                                |                                                                                               |         |         |
| 50    | 0 Mass of pycnometer, sample, and water determined and recorded?                                      |             |                                |                                                                                               |         |         |
| 51.   | 1. Specific Gravity determined?                                                                       |             |                                |                                                                                               |         |         |
| First | Attempt:                                                                                              | Pass        | Fail                           | Second Attempt: Pass Fail                                                                     |         |         |
| Signa | ature of Exa                                                                                          | aminer      |                                | WAQTC #:                                                                                      |         |         |
| Com   | ments:                                                                                                |             |                                |                                                                                               |         |         |
|       |                                                                                                       |             |                                |                                                                                               |         |         |
|       |                                                                                                       |             |                                |                                                                                               |         |         |
|       |                                                                                                       |             |                                |                                                                                               |         |         |
|       |                                                                                                       |             |                                |                                                                                               |         |         |
|       |                                                                                                       |             |                                |                                                                                               |         |         |

# WSDOT Errata to FOP for AASHTO T 27\_T 11

# Sieve Analysis of Fine and Coarse Aggregates

WAQTC FOP for AASHTO T 27\_T 11 has been adopted by WSDOT with the following changes:

**Procedure Method C** – Method not recognized by WSDOT.

#### Sample Preparation

**Table 1 Test Sample Sizes for Aggregate Gradation Test** – Shall conform to the following table and nominal maximum size definition.

| Nominal Maxim | um Size*in (mm) | Minimum Dry | y Mass Ib (kg) |
|---------------|-----------------|-------------|----------------|
| US No. 4      | (4.75)          | 1           | (0.5)          |
| 1⁄4           | (6.3)           | 2           | (1)            |
| 3⁄8           | (9.5)           | 2           | (1)            |
| 1/2           | (12.5)          | 5           | (2)            |
| 5⁄8           | (16.0)          | 5           | (2)            |
| 3⁄4           | (19.0)          | 7           | (3)            |
| 1             | (25.0)          | 13          | (6)            |
| 1¼            | (31.5)          | 17          | (7.5)          |
| 1½            | (37.5)          | 20          | (9)            |
| 2             | (50)            | 22          | (10)           |
| 21⁄2          | (63)            | 27          | (12)           |
| 3             | (75)            | 33          | (15)           |
| 3½            | (90)            | 44          | (20)           |

\*For Aggregate, the nominal maximum size sieve is the largest standard sieve opening listed in the applicable specification upon which more than 1-percent of the material by weight is permitted to be retained. For concrete aggregate, the nominal maximum size sieve is the smallest standard sieve opening through which the entire amount of aggregate is permitted to pass.

## SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES FOP FOR AASHTO T 27 MATERIALS FINER THAN 75 µM (NO. 200) SIEVE IN MINERAL AGGREGATE BY WASHING FOP FOR AASHTO T 11

## Scope

A sieve analysis, or 'gradation,' measures distribution of aggregate particle sizes within a given sample.

Accurate determination of the amount of material smaller than 75  $\mu$ m (No. 200) cannot be made using just AASHTO T 27. If quantifying this material is required, use AASHTO T 11 in conjunction with AASHTO T 27.

This FOP covers sieve analysis in accordance with AASHTO T 27-20 and materials finer than 75  $\mu$ m (No. 200) in accordance with AASHTO T 11-20 performed in conjunction with AASHTO T 27. The procedure includes three methods: A, B, and C.

# Apparatus

- Balance or scale: Capacity sufficient for the masses shown in Table 1, accurate to 0.1 percent of the sample mass or readable to 0.1 g, and meeting the requirements of AASHTO M 231
- Sieves: Meeting the requirements of ASTM E11
- Mechanical sieve shaker: Meeting the requirements of AASHTO T 27
- Suitable drying equipment (refer to FOP for AASHTO T 255)
- Containers and utensils: A pan or vessel of sufficient size to contain the sample covered with water and permit vigorous agitation without loss of material or water
- Optional
  - Mechanical washing device
  - Mallet: With a rubber or rawhide head having a mass of 0.57 ±0.23 kg (1.25 ±0.5 lb)

## **Sample Sieving**

- In all procedures, the sample is shaken in nested sieves. Sieves are selected to furnish information required by specification. Intermediate sieves are added for additional information or to avoid overloading sieves, or both.
- The sieves are nested in order of increasing size from the bottom to the top, and the sample, or a portion of the sample, is placed on the top sieve.
- The loaded sieves are shaken in a mechanical shaker for approximately 10 minutes, refer to Annex A, *Time Evaluation*.

Aggregate 12-1

WAQTC

• Care must be taken so that sieves are not overloaded, refer to Annex B, *Overload Determination*. The sample may be sieved in increments and the mass retained for each sieve added together from each sample increment to avoid overloading sieves.

## **Sample Preparation**

Obtain samples according to the FOP for AASHTO R 90 and reduce to sample size, shown in Table 1, according to the FOP for AASHTO R 76.

TABLE 1

| Sample Sizes for Aggregate Gradation Test |                |                  |       |  |  |  |
|-------------------------------------------|----------------|------------------|-------|--|--|--|
| Nominal 1                                 | Maximum        | Minimum Dry Mass |       |  |  |  |
| Size* n                                   | Size* mm (in.) |                  | lb)   |  |  |  |
| 125                                       | (5)            | 300,000          | (660) |  |  |  |
| 100                                       | (4)            | 150,000          | (330) |  |  |  |
| 90                                        | (3 1/2)        | 100,000          | (220) |  |  |  |
| 75                                        | (3)            | 60,000           | (130) |  |  |  |
| 63                                        | (2 1/2)        | 35,000           | (77)  |  |  |  |
| 50                                        | (2)            | 20,000           | (44)  |  |  |  |
| 37.5                                      | (1 1/2)        | 15,000           | (33)  |  |  |  |
| 25.0                                      | (1)            | 10,000           | (22)  |  |  |  |
| 19.0                                      | (3/4)          | 5000             | (11)  |  |  |  |
| 12.5                                      | (1/2)          | 2000             | (4)   |  |  |  |
| 9.5                                       | (3/8)          | 1000             | (2)   |  |  |  |
| 6.3                                       | (1/4)          | 1000             | (2)   |  |  |  |
| 4.75                                      | (No. 4)        | 500              | (1)   |  |  |  |
|                                           |                |                  |       |  |  |  |

\*Nominal maximum size: One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps between specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

Sample sizes in Table 1 are standard for aggregate sieve analysis, due to equipment restraints samples may need to be divided into several "subsamples." For example, a gradation that requires 100 kg (220 lbs.) of material would not fit into a large tray shaker all at once.

Some agencies permit reduced sample sizes if it is proven that doing so is not detrimental to the test results. Some agencies require larger sample sizes. Check agency guidelines for required or permitted sample sizes.

Aggregate 12-2

## WAQTC

FOP AASHTO T 27 / T 11 (21)

# **Selection of Procedure**

Agencies may specify which method to perform. If a method is not specified, perform Method A.

## Overview

## Method A

- Determine original dry mass of the sample
- Wash over a 75µm (No. 200) sieve
- Determine dry mass of washed sample
- Sieve washed sample
- Calculate and report percent retained and passing each sieve

## Method B

- Determine original dry mass of the sample
- Wash over a 75 µm (No. 200) sieve
- Determine dry mass of washed sample
- Sieve sample through coarse sieves, 4.75 mm (No. 4) sieves and larger
- Determine mass of fine material, minus 4.75 mm (No. 4)
- Reduce fine material
- Determine mass of reduced portion
- Sieve reduced portion
- Calculate and report percent retained and passing each sieve

## Method C

- Determine original dry mass of the sample
- Sieve sample through coarse sieves, 4.75 mm (No. 4) sieves and larger
- Determine mass of fine material, minus 4.75 mm (No. 4)
- Reduce fine material
- Determine mass of reduced portion
- Wash reduced portion over a 75µm (No. 200) sieve
- Determine dry mass of washed reduced portion
- Sieve washed reduced portion
- Calculate and report percent retained and passing each sieve

Aggregate 12-3

WAQTC

# **Procedure Method A**

1. Dry the sample to constant mass according to the FOP for AASHTO T 255. Cool to room temperature. Determine and record the original dry mass of the sample to the nearest 0.1 percent or 0.1 g. Designate this mass as M.

When the specification does not require the amount of material finer than 75  $\mu$ m (No. 200) be determined by washing, skip to Step 11.

- 2. Nest a sieve, such as a 2.0 mm (No. 10), above the 75  $\mu$ m (No. 200) sieve.
- 3. Place the sample in a container and cover with water.
- *Note 1:* A detergent, dispersing agent, or other wetting solution may be added to the water to assure a thorough separation of the material finer than the 75 μm (No. 200) sieve from the coarser particles. There should be enough wetting agent to produce a small amount of suds when the sample is agitated. Excessive suds may overflow the sieves and carry material away with them.
- Agitate vigorously to ensure complete separation of the material finer than 75 μm (No. 200) from coarser particles and bring the fine material into suspension above the coarser material. Avoid degradation of the sample when using a mechanical washing device.
- *Note 2:* Washing longer than 10 minutes in a mechanical washer has been shown to cause significant amounts of degradation depending upon aggregate type.
- 5. Immediately pour the wash water containing the suspended material over the nested sieves; be careful not to pour out the coarser particles or over fill the 75  $\mu$ m (No. 200) sieve.
- 6. Add water to cover material remaining in the container, agitate, and repeat Step 5. Continue until the wash water is reasonably clear.
- 7. Remove the upper sieve and return material retained to the washed sample.
- 8. Rinse the material retained on the 75  $\mu$ m (No. 200) sieve until water passing through the sieve is reasonably clear and detergent or dispersing agent is removed, if used.
- 9. Return all material retained on the 75  $\mu$ m (No. 200) sieve to the container by rinsing into the washed sample.
- *Note 3:* Excess water may be carefully removed with a bulb syringe; the removed water must be discharged back over the 75 μm (No. 200) sieve to prevent loss of fines.
- 10. Dry the washed sample to constant mass according to the FOP for AASHTO T 255. Cool to room temperature. Determine and record the dry mass of the sample.
- Select sieves required by the specification and those necessary to avoid overloading as described in Annex B. With a pan on bottom, nest the sieves increasing in size starting with the 75 μm (No. 200).
- 12. Place the sample, or a portion of the sample, on the top sieve. Sieves may already be in the mechanical shaker, if not place sieves in mechanical shaker and shake for the minimum time determined to provide complete separation for the sieve shaker being used (approximately 10 minutes, the time determined by Annex A).

*Note 4:* Excessive shaking (more than 10 minutes) may result in degradation of the sample.

| 40_T27_T11_short_21_errata | Aggregate 12-4 | Pub. October 2021 |
|----------------------------|----------------|-------------------|
|----------------------------|----------------|-------------------|

FOP AASHTO T 27 / T 11 (21)

- 13. Determine and record the individual or cumulative mass retained for each sieve and in the pan. Ensure that all material trapped in full openings of the sieve are removed and included in the mass retained.
- *Note 5:* For sieves 4.75 mm (No. 4) and larger, check material trapped in less than a full opening by sieving over a full opening. Use coarse wire brushes to clean the 600 μm (No. 30) and larger sieves, and soft bristle brushes for smaller sieves.
- *Note 6:* In the case of coarse / fine aggregate mixtures, distribute the minus 4.75 mm (No. 4) among two or more sets of sieves to prevent overloading of individual sieves.
- 14. Perform the *Check Sum* calculation Verify the *total mass after sieving* agrees with the *dry mass before sieving* to within 0.3 percent. The *dry mass before sieving* is the dry mass after wash or the original dry mass (*M*) if performing the sieve analysis without washing. Do not use test results for acceptance if the *Check Sum* result is greater than 0.3 percent.
- 15. Calculate the total percentages passing, and the individual or cumulative percentages retained to the nearest 0.1 percent by dividing the individual sieve masses or cumulative sieve masses by the original dry mass (M) of the sample.
- 16. Report total percent passing to 1 percent except report the 75 μm (No. 200) sieve to 0.1 percent.

#### **Method A Calculations**

#### **Check Sum**

$$Check Sum = \frac{dry \ mass \ before \ seiving - total \ mass \ after \ sieving}{dry \ mass \ before \ sieving} \times 100$$

#### **Percent Retained**

$$IPR = \frac{IMR}{M} \times 100$$
 or  $CPR = \frac{CMR}{M} \times 100$ 

Where:

| IPR | = | Individual Percent Retained     |
|-----|---|---------------------------------|
| CPR | = | Cumulative Percent Retained     |
| М   | = | Original dry mass of the sample |
| IMR | = | Individual Mass Retained        |
| CMR | = | Cumulative Mass Retained        |

40\_T27\_T11\_short\_21\_errata

Aggregate 12-5

WAQTC

Percent Passing (PP)

PP = PPP - IPR or PP = 100 - CPR

Where:

PP = Percent Passing PPP = Previous Percent Passing

# Method A Example Individual Mass Retained

| Original dry mass of the sample (M):                                                 | 5168.7 g |  |  |  |
|--------------------------------------------------------------------------------------|----------|--|--|--|
| Dry mass of the sample after washing:                                                |          |  |  |  |
| Total mass after sieving equals                                                      |          |  |  |  |
| Sum of Individual Masses Retained (IMR), including minus 75 µm (No. 200) in the pan: | 4905.9 g |  |  |  |
| Amount of 75µm (No. 200) minus washed out (5168.7 g – 4911.3 g):                     | 257.4 g  |  |  |  |

## **Check Sum**

Check Sum = 
$$\frac{4911.3 \ g - 4905.9 \ g}{4911.3 \ g} \times 100 = 0.1\%$$

The result is less than 0.3 percent therefore the results can be used for acceptance purposes.

# Individual Percent Retained (IPR) for 9.5 mm (3/8 in.) sieve:

$$IPR = \frac{619.2 \, g}{5168.7 \, g} \times 100 = 12.0\%$$

Percent Passing (PP) 9.5 mm (3/8 in.) sieve:

$$PP = 86.0\% - 12.0\% = 74.0\%$$

**Reported Percent Passing = 74%** 

40\_T27\_T11\_short\_21\_errata

Aggregate 12-6

Pub. October 2021

## AGGREGATE

# FOP AASHTO T 27 / T 11 (21)

| Sieve Size<br>mm<br>(in.)              | Individual<br>Mass<br>Retained<br>g<br>(IMR) | Determine IPR<br>by dividing IMR<br>by <i>M</i> and<br>multiplying by<br>100 | Individual<br>Percent<br>Retained<br>(IPR) | Determine PP<br>by subtracting<br>IPR from<br>Previous PP | Percent<br>Passing<br>(PP) | Reported<br>Percent<br>Passing* |
|----------------------------------------|----------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------|----------------------------|---------------------------------|
| 19.0<br>(3/4)                          | 0                                            |                                                                              | 0                                          |                                                           | 100.0                      | 100                             |
| 12.5<br>(1/2)                          | 724.7                                        | $\frac{724.7}{5168.7} \times 100 =$                                          | 14.0                                       | 100.0 - 14.0 =                                            | 86.0                       | 86                              |
| 9.5<br>(3/8)                           | 619.2                                        | $\frac{619.2}{5168.7} \times 100 =$                                          | 12.0                                       | 86.0 - 12.0 =                                             | 74.0                       | 74                              |
| 4.75<br>(No. 4)                        | 1189.8                                       | $\frac{1189.8}{5168.7} \times 100 =$                                         | 23.0                                       | 74.0 - 23.0 =                                             | 51.0                       | 51                              |
| 2.36<br>(No. 8)                        | 877.6                                        | $\frac{877.6}{5168.7} \times 100 =$                                          | 17.0                                       | 51.0 - 17.0 =                                             | 34.0                       | 34                              |
| 1.18<br>(No. 16)                       | 574.8                                        | $\frac{574.8}{5168.7} \times 100 =$                                          | 11.1                                       | 34.0 - 11.1 =                                             | 22.9                       | 23                              |
| 0.600<br>(No. 30)                      | 329.8                                        | $\frac{329.8}{5168.7} \times 100 =$                                          | 6.4                                        | 22.9 - 6.4 =                                              | 16.5                       | 17                              |
| 0.300<br>(No. 50)                      | 228.5                                        | $\frac{228.5}{5168.7} \times 100 =$                                          | 4.4                                        | 16.5 - 4.4 =                                              | 12.1                       | 12                              |
| 0.150<br>(No. 100)                     | 205.7                                        | $\frac{205.7}{5168.7} \times 100 =$                                          | 4.0                                        | 12.1 - 4.0 =                                              | 8.1                        | 8                               |
| 0.075<br>(No. 200)                     | 135.4                                        | $\frac{135.7}{5168.7} \times 100 =$                                          | 2.6                                        | 8.1 - 2.6 =                                               | 5.5                        | 5.5                             |
| minus 0.075<br>(No. 200)<br>in the pan | 20.4                                         |                                                                              |                                            |                                                           |                            |                                 |
|                                        | er sieving $=$ s                             | um of sieves + mas                                                           | ss in the pan                              | = 4905.9 g                                                | II                         |                                 |
| Original dry m                         | ass of the sar                               | mple (M): 5168.7g                                                            |                                            |                                                           |                            |                                 |

# Method A Individual Gradation on All Sieves

\* Report total percent passing to 1 percent except report the 75 μm (No. 200) sieve to 0.1 percent.

40\_T27\_T11\_short\_21\_errata

Aggregate 12-7

| AGGREGATE | WAQTC | FOP AASHTO T 27 / T 11 (21) |
|-----------|-------|-----------------------------|
|           |       |                             |

# Method A Example Cumulative Mass Retained

| Original dry mass of the sample ( <i>M</i> ):                          | 5168.7 g |  |  |
|------------------------------------------------------------------------|----------|--|--|
| Dry mass of the sample after washing:                                  |          |  |  |
| Total mass after sieving equals Final Cumulative Mass Retained         |          |  |  |
| (FCMR) (includes minus 75 $\mu$ m (No. 200) from the pan):             | 4905.9 g |  |  |
| Amount of 75 $\mu$ m (No. 200) minus washed out (5168.7 g – 4911.3 g): | 257.4 g  |  |  |

# **Check Sum**

Check Sum = 
$$\frac{4911.3 \ g - 4905.9 \ g}{4911.3 \ g} \times 100 = 0.1\%$$

The result is less than 0.3 percent therefore the results can be used for acceptance purposes.

# Cumulative Percent Retained (CPR) for 9.5 mm (3/8 in.) sieve:

$$CPR = \frac{1343.9 \ g}{5168.7 \ g} \times 100 = 26.0\%$$

Percent Passing (PP) 9.5 mm (3/8 in.) sieve:

$$PP = 100.0\% - 26.0\% = 74.0\%$$

**Reported Percent Passing = 74%** 

40\_T27\_T11\_short\_21\_errata

| Sieve Size<br>mm<br>(in.) | Cumulative<br>Mass<br>Retained<br>g<br>(CMR) | Determine CPR<br>by dividing CMR<br>by M and<br>multiplying by<br>100 | Cumulative<br>Percent<br>Retained<br>(CPR) | Determine PP<br>by subtracting<br>CPR from 100.0 | Percent<br>Passing<br>(PP) | Reported<br>Percent<br>Passing* |
|---------------------------|----------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------|----------------------------|---------------------------------|
| 19.0<br>(3/4)             | 0                                            |                                                                       | 0.0                                        |                                                  | 100.0                      | 100                             |
| 12.5<br>(1/2)             | 724.7                                        | $\frac{724.7}{5168.7} \times 100 =$                                   | 14.0                                       | 100.0 - 14.0 =                                   | 86.0                       | 86                              |
| 9.5<br>(3/8)              | 1343.9                                       | $\frac{1343.9}{5168.7} \times 100 =$                                  | 26.0                                       | 100.0 - 26.0 =                                   | 74.0                       | 74                              |
| 4.75<br>(No. 4)           | 2533.7                                       | $\frac{2533.7}{5168.7} \times 100 =$                                  | 49.0                                       | 100.0 - 49.0 =                                   | 51.0                       | 51                              |
| 2.36<br>(No. 8)           | 3411.3                                       | $\frac{3411.3}{5168.7} \times 100 =$                                  | 66.0                                       | 100.0 - 66.0 =                                   | 34.0                       | 34                              |
| 1.18<br>(No. 16)          | 3986.1                                       | $\frac{3986.1}{5168.7} \times 100 =$                                  | 77.1                                       | 100.0 - 77.1 =                                   | 22.9                       | 23                              |
| 0.600<br>(No. 30)         | 4315.9                                       | $\frac{4315.9}{5168.7} \times 100 =$                                  | 83.5                                       | 100.0 - 83.5 =                                   | 16.5                       | 17                              |
| 0.300<br>(No. 50)         | 4544.4                                       | $\frac{4544.4}{5168.7} \times 100 =$                                  | 87.9                                       | 100.0 - 87.9 =                                   | 12.1                       | 12                              |
| 0.150<br>(No. 100)        | 4750.1                                       | $\frac{4750.1}{5168.7} \times 100 =$                                  | 91.9                                       | 100.0 - 91.9 =                                   | 8.1                        | 8                               |
| 0.075<br>(No. 200)        | 4885.5                                       | $\frac{4885.5}{5168.7} \times 100 =$                                  | 94.5                                       | 100.0 - 94.5 =                                   | 5.5                        | 5.5                             |
| FCMR                      | 4905.9                                       |                                                                       |                                            |                                                  |                            |                                 |
| Total mass                | after sieving:                               | 4905.9 g                                                              |                                            |                                                  |                            |                                 |
| Original dr               | y mass of the                                | sample (M): 5168.                                                     | 7 g                                        |                                                  |                            |                                 |

# Method A Cumulative Gradation on All Sieves

\* Report total percent passing to 1 percent except report the 75  $\mu$ m (No. 200) sieve to 0.1 percent.

Aggregate 12-9

WAQTC

# **Procedure Method B**

1. Dry the sample to constant mass according to the FOP for AASHTO T 255. Cool to room temperature. Determine and record the original dry mass of the sample to the nearest 0.1 percent or 0.1 g. Designate this mass as M.

When the specification does not require the amount of material finer than 75  $\mu$ m (No. 200) be determined by washing, skip to Step 11.

- 2. Nest a protective sieve, such as a 2.0 mm (No. 10), above the 75  $\mu$ m (No. 200) sieve.
- 3. Place the sample in a container and cover with water.
- *Note 1:* A detergent, dispersing agent, or other wetting solution may be added to the water to assure a thorough separation of the material finer than the 75 μm (No. 200) sieve from the coarser particles. There should be enough wetting agent to produce a small amount of suds when the sample is agitated. Excessive suds may overflow the sieves and carry material away with them.
- Agitate vigorously to ensure complete separation of the material finer than 75 μm (No. 200) from coarser particles and bring the fine material into suspension above the coarser material. Avoid degradation of the sample when using a mechanical washing device.
- *Note 2:* Washing longer than 10 minutes in a mechanical washer has been shown to cause significant amounts of degradation depending upon aggregate type.
- 5. Immediately pour the wash water containing the suspended material over the nested sieves; be careful not to pour out the coarser particles or over fill the 75  $\mu$ m (No. 200) sieve.
- 6. Add water to cover material remaining in the container, agitate, and repeat Step 5. Continue until the wash water is reasonably clear.
- 7. Remove the upper sieve and return material retained to the washed sample.
- 8. Rinse the material retained on the 75  $\mu$ m (No. 200) sieve until water passing through the sieve is reasonably clear and detergent or dispersing agent is removed, if used.
- 9. Return all material retained on the 75  $\mu$ m (No. 200) sieve to the container by rinsing into the washed sample.
- *Note 3:* Excess water may be carefully removed with a bulb syringe; the removed water must be discharged back over the 75 μm (No. 200) sieve to prevent loss of fines.
- 10. Dry the washed sample to constant mass according to the FOP for AASHTO T 255. Cool to room temperature. Determine and record the dry mass after wash.
- 11. Select sieves required by the specification and those necessary to avoid overloading as described in Annex B. With a pan on bottom, nest the sieves increasing in size starting with the 4.75 mm (No. 4).
- 12. Place the sample, or a portion of the sample, on the top sieve. Sieves may already be in the mechanical shaker, if not place the sieves in the mechanical shaker and shake for the minimum time determined to provide complete separation for the sieve shaker being used (approximately 10 minutes, the time determined by Annex A).

Note 4: Excessive shaking (more than 10 minutes) may result in degradation of the sample.

40\_T27\_T11\_short\_21\_errata

Aggregate 12-10

- FOP AASHTO T 27 / T 11 (21)
- 13. Determine and record the individual or cumulative mass retained for each sieve. Ensure that all particles trapped in full openings of the sieve are removed and included in the mass retained.
- *Note 5:* For sieves 4.75 mm (No. 4) and larger, check material trapped in less than a full opening by sieving over a full opening. Use coarse wire brushes to clean the 600 μm (No. 30) and larger sieves, and soft hair bristle for smaller sieves.
- 14. Determine and record the mass of the minus 4.75 mm (No. 4) material in the pan. Designate this mass as  $M_{l}$ .
- 15. Perform the *Coarse Check Sum* calculation Verify the *total mass after coarse sieving* agrees with the *dry mass before sieving* to within 0.3 percent. The *dry mass before sieving* is the dry mass after wash or the original dry mass (*M*) if performing the sieve analysis without washing. Do not use test results for acceptance if the *Check Sum* result is greater than 0.3 percent.
- 16. Reduce the minus 4.75 mm (No. 4) according to the FOP for AASHTO R 76 to produce a sample with a minimum mass of 500 g. Determine and record the mass of the minus 4.75 mm (No. 4) split, designate this mass as  $M_2$ .
- 17. Select sieves required by the specification and those necessary to avoid overloading as described in Annex B. With a pan on bottom, nest the sieves increasing in size starting with the 75  $\mu$ m (No. 200) up to, but not including, the 4.75 mm (No. 4) sieve.
- 18. Place the sample portion on the top sieve and place the sieves in the mechanical shaker. Shake for the minimum time determined to provide complete separation for the sieve shaker being used (approximately 10 minutes, the time determined by Annex A).
- 19. Determine and record the individual or cumulative mass retained for each sieve and in the pan. Ensure that all particles trapped in full openings of the sieve are removed and included in the mass retained. (See Note 5.)
- 20. Perform the *Fine Check Sum* calculation Verify the *total mass after sieving* agrees with the *dry mass before sieving* ( $M_2$ ) to within 0.3 percent. Do not use test results for acceptance if the *Check Sum* result is greater than 0.3 percent.
- 21. Calculate to the nearest 0.1 percent, the Individual Mass Retained (IMR) or Cumulative Mass Retained (CMR) of the size increment of the reduced sample and the original sample.
- 22. Calculate the total percent passing.
- 23. Report total percent passing to 1 percent except report the 75  $\mu$ m (No. 200) sieve to 0.1 percent.

40\_T27\_T11\_short\_21\_errata

Aggregate 12-11

## WAQTC

# **Method B Calculations**

## **Check Sum**

 $Coarse Check Sum = \frac{dry \ mass \ before \ sieveing - total \ mass \ after \ coarse \ sieving}{dry \ mass \ before \ sieving} \times 100$ 

Fine Check Sum =  $\frac{M_2 - total mass after fine sieving}{M_2} \times 100$ 

Percent Retained for 4.75 mm (No. 4) and larger

$$IPR = \frac{IMR}{M} \times 100$$
 or  $CPR = \frac{CMR}{M} \times 100$ 

Where:

| IPR | = | Individual Percent Retained     |
|-----|---|---------------------------------|
| CPR | = | Cumulative Percent Retained     |
| М   | = | Original dry mass of the sample |
| IMR | = | Individual Mass Retained        |
| CMR | = | Cumulative Mass Retained        |

# Percent Passing (PP) for 4.75 mm (No. 4) and larger

PP = PPP - IPR or PP = 100 - CPR

Where:

PP = Percent Passing PPP = Previous Percent Passing

40\_T27\_T11\_short\_21\_errata

Aggregate 12-12

Pub. October 2021

#### WAQTC

#### Minus 4.75mm (No. 4) adjustment factor (R)

The mass of material retained for each sieve is multiplied by the adjustment factor, the total mass of the minus 4.75 mm (No. 4) from the pan,  $M_1$ , divided by the mass of the reduced split of minus 4.75 mm (No. 4),  $M_2$ . For consistency, this adjustment factor is carried to three decimal places.

$$R = \frac{M_1}{M_2}$$

where:

R = minus 4.75 mm (No. 4) adjustment factor
 M1 = total mass of minus 4.75 mm (No. 4) before reducing
 M2 = mass of the reduced split of minus 4.75 mm (No. 4)

## **Total Individual Mass Retained (TIMR):**

$$TIMR = R \times B$$

where:

| TIMR = Total Individual Mass Retained                                  |      |
|------------------------------------------------------------------------|------|
| R = minus 4.75 mm (No. 4) adjustment factor                            |      |
| B = individual mass of the size increment in the reduced por<br>sieved | tion |

## **Total Cumulative Mass Retained (TCMR)**

$$TCMR = (R \times B) + D$$

where:

TCMR = Total Cumulative Mass Retained

R = minus 4.75 mm (No. 4) adjustment factor

- B = cumulative mass of the size increment in the reduced portion sieved
- D = cumulative mass of plus 4.75mm (No. 4) portion of sample

40\_T27\_T11\_short\_21\_errata

Aggregate 12-13

| AGGREGATE                         | WAQTC                      | FOP AASHTO T 27 / T 11 (21) |
|-----------------------------------|----------------------------|-----------------------------|
| Method B Example Individ          | lual Mass Retained         |                             |
| Dry mass of total sample, befo    | 3214.0 g                   |                             |
| Dry mass of sample after washing: |                            | 3085.1 g                    |
| Total mass after sieving          |                            |                             |
| Sum of Individual Mas             | ses Retained (IMR) plus th | e                           |

| minus 4.75 mm (No. 4) from the pan:                               | 3085.0 g |
|-------------------------------------------------------------------|----------|
| Amount of 75 µm (No. 200) minus washed out (3214.0 g – 3085.1 g): | 128.9 g  |

# **Coarse Check Sum**

Coarse Check Sum = 
$$\frac{3085.1 \ g - 3085.0 \ g}{3085.1 \ g} \times 100 = 0.0\%$$

The result is less than 0.3 percent therefore the results can be used for acceptance purposes.

# Individual Percent Retained (IPR) for 9.5 mm (3/8 in.) sieve

$$IPR = \frac{481.4 \ g}{3214.0 \ g} \times 100 = 15.0\%$$

Percent Passing (PP) for 9.5 mm (3/8 in.) sieve:

PP = 95.0% - 15.0% = 80.0%

**Reported Percent Passing = 80%** 

40\_T27\_T11\_short\_21\_errata

Aggregate 12-14

Pub. October 2021

Page 16 of 46

## WAQTC

| FOP AASHTO T 27 / T 11 (21) |
|-----------------------------|
|-----------------------------|

| Sieve<br>Size<br>mm<br>(in.)                                           | Individual<br>Mass<br>Retained<br>g<br>(IMR) | Determine IPR<br>by dividing IMR<br>by M and<br>multiplying by<br>100 | Individual<br>Percent<br>Retained<br>(IPR) | Determine PP<br>by subtracting<br>IPR from<br>Previous PP | Percent<br>Passing<br>(PP) |  |
|------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------|----------------------------|--|
| 16.0<br>(5/8)                                                          | 0                                            |                                                                       | 0                                          |                                                           | 100                        |  |
| 12.5<br>(1/2)                                                          | 161.1                                        | $\frac{161.1}{3214.0} \times 100 =$                                   | 5.0                                        | 100.0 - 5.0 =                                             | 95.0                       |  |
| 9.50<br>(3/8)                                                          | 481.4                                        | $\frac{481.4}{3214.0} \times 100 =$                                   | 15.0                                       | 95.0 - 15.0 =                                             | 80.0                       |  |
| 4.75<br>(No. 4)                                                        | 475.8                                        | $\frac{475.8}{3214.0} \times 100 =$                                   | 14.8                                       | 80.0 - 14.8 =                                             | 65.2                       |  |
| Minus 4.75<br>(No. 4)<br>in the pan                                    | 1966.7 ( <b>M</b> <sub>1</sub> )             |                                                                       |                                            |                                                           |                            |  |
| Total mass after sieving: sum of sieves + mass in the pan = $3085.0$ g |                                              |                                                                       |                                            |                                                           |                            |  |
| Original dry mass of the sample (M): 3214.0 g                          |                                              |                                                                       |                                            |                                                           |                            |  |

# Method B Individual Gradation on Coarse Sieves

## **Fine Sample**

The minus 4.75 mm (No. 4) from the pan,  $M_l$  (1966.7 g), was reduced according to the FOP for AASHTO R 76, to at least 500 g. In this case, the reduced mass was determined to be **512.8** g. This is  $M_2$ .

The reduced mass was sieved.

Total mass after sieving equals

Sum of Individual Masses Retained (IMR) including minus 75 µm (No. 200) in the pan

511.8 g

40\_T27\_T11\_short\_21\_errata

Aggregate 12-15

WAQTC

**Fine Check Sum** 

Fine Check Sum = 
$$\frac{512.8 \ g - 511.8 \ g}{512.8 \ g} \times 100 = 0.2\%$$

The result is less than 0.3 percent therefore the results can be used for acceptance purposes.

# Adjustment Factor (*R*) for Total Individual Mass Retained (TIMR) on minus 4.75 (No. 4) sieves

The mass of material retained for each sieve is multiplied by the adjustment factor (R) carried to three decimal places.

$$R = \frac{M_1}{M_2} = \frac{1,966.7 \ g}{512.8 \ g} = 3.835$$

where:

R = minus 4.75 mm (No. 4) adjustment factor

 $M_1$  = total mass of minus 4.75 mm (No. 4) from the pan

 $M_2$  = mass of the reduced split of minus 4.75 mm (No. 4)

Each "individual mass retained" on the fine sieves must be multiplied by *R* to obtain the *Total Individual Mass Retained (TIMR)*.

Total Individual Mass Retained (TIMR) for 2.00 mm (No. 10) sieve

 $TIMR = 3.835 \times 207.1 g = 794.2 g$ 

## Individual Percent Retained (IPR) for 2.00 mm (No. 10) sieve:

$$IPR = \frac{794.2 \ g}{3214.0 \ g} \times 100 = 24.7\%$$

40 T27 T11 short 21 errata

Aggregate 12-16

# WAQTC

FOP AASHTO T 27 / T 11 (21)

Percent Passing (PP) 2 mm (No. 10) sieve:

PP = 65.2% - 24.7% = 40.5%

**Reported Percent Passing = 41%** 

| Sieve Size<br>mm<br>(in.)                                                      | Individual<br>Mass Retained<br>g<br>(IMR) | Determine TIMR<br>by multiplying<br>IMR by $R\left(\frac{M_1}{M_2}\right)$ | Total<br>Individual<br>Mass Retained<br>(TIMR) |  |
|--------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------|--|
| 2.00<br>(No. 10)                                                               | 207.1                                     | 207.1 × 3.835 =                                                            | 794.2                                          |  |
| 0.425<br>(No. 40)                                                              | 187.9                                     | 187.9 × 3.835 =                                                            | 720.6                                          |  |
| 0.210<br>(No. 80)                                                              | 59.9                                      | 59.9 × 3.835 =                                                             | 229.7                                          |  |
| 0.075<br>(No. 200)                                                             | 49.1                                      | 49.1 × 3.835 =                                                             | 188.3                                          |  |
| minus 0.075<br>(No. 200)<br>in the pan                                         | 7.8                                       |                                                                            |                                                |  |
| Total mass after sieving: sum of fine sieves + the mass in the pan = $511.8$ g |                                           |                                                                            |                                                |  |

# Method B Individual Gradation on Fine Sieves

40\_T27\_T11\_short\_21\_errata

Aggregate 12-17

### T 27\_T 11

# AGGREGATE

# WAQTC

# FOP AASHTO T 27 / T 11 (21)

| Sieve Size<br>mm<br>(in.)                                | Total<br>Individual<br>Mass<br>Retained<br>g<br>(TIMR) | Determine IPR<br>by dividing<br>TIMR by M and<br>multiplying by<br>100 | Individual<br>Percent<br>Retained<br>(IPR) | Determine PP<br>by subtracting<br>IPR from<br>previous PP | Percent<br>Passing<br>(PP) | Reported<br>Percent<br>Passing* |
|----------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------|----------------------------|---------------------------------|
| 16.0<br>(5/8)                                            | 0                                                      |                                                                        | 0                                          |                                                           | 100                        | 100                             |
| 12.5<br>(1/2)                                            | 161.1                                                  | $\frac{161.1}{3214.0} \times 100 =$                                    | 5.0                                        | 100.0 - 5.0 =                                             | 95.0                       | 95                              |
| 9.50<br>(3/8)                                            | 481.4                                                  | $\frac{481.4}{3214.0} \times 100 =$                                    | 15.0                                       | 95.0 - 15.0 =                                             | 80.0                       | 80                              |
| 4.75<br>(No. 4)                                          | 475.8                                                  | $\frac{475.8}{3214.0} \times 100 =$                                    | 14.8                                       | 80.0 - 14.8 =                                             | 65.2                       | 65                              |
| 2.00<br>(No. 10)                                         | 794.2                                                  | $\frac{794.2}{3214.0} \times 100 =$                                    | 24.7                                       | 65.2 - 24.7 =                                             | 40.5                       | 41                              |
| 0.425<br>(No. 40)                                        | 720.6                                                  | $\frac{720.6}{3214.0} \times 100 =$                                    | 22.4                                       | 40.5 - 22.4 =                                             | 18.1                       | 18                              |
| 0.210<br>(No. 80)                                        | 229.7                                                  | $\frac{229.7}{3214.0} \times 100 =$                                    | 7.1                                        | 18.1 – 7.1 =                                              | 11.0                       | 11                              |
| 0.075<br>(No. 200)                                       | 188.3                                                  | $\frac{188.3}{3214.0} \times 100 =$                                    | 5.9                                        | 11.0 - 5.9 =                                              | 5.1                        | 5.1                             |
| minus 0.075<br>(No. 200)<br>in the pan<br>Original dry r | 29.9                                                   | mple <i>(M)</i> : 3214.0 §                                             | 5                                          |                                                           |                            |                                 |

Method B Individual Final Gradation on All Sieves

\* Report total percent passing to 1 percent except report the 75  $\mu$ m (No. 200) sieve to 0.1 percent.

Aggregate 12-18

Pub. October 2021

Page 20 of 46

| AGGREGATE | WAQTC | FOP AASHTO T 27 / T 11 (21) |
|-----------|-------|-----------------------------|

# Method B Example Cumulative Mass Retained

| Original dry mass of the sample (M):                              | 3214.0 g |  |
|-------------------------------------------------------------------|----------|--|
| Dry mass of sample after washing:                                 |          |  |
| Total mass after sieving equals                                   |          |  |
| Cumulative Mass Retained (CMR) on the 4.75 (No. 4)                | 2005.0   |  |
| plus the minus 4.75 mm (No. 4) in the pan:                        | 3085.0 g |  |
| Amount of 75 µm (No. 200) minus washed out (3214.0 g – 3085.1 g): | 128.9 g  |  |

**Coarse Check Sum** 

Coarse Check Sum =  $\frac{3085.1 \ g - 3085.0 \ g}{3085.1 \ g} \times 100 = 0.0\%$ 

The result is less than 0.3 percent therefore the results can be used for acceptance purposes.

# Cumulative Percent Retained (CPR) for 9.5 mm (3/8 in.) sieve

$$CPR = \frac{642.5 \, g}{3214.0 \, g} \times 100 = 20.0\%$$

Percent Passing (PP) for 9.5 mm (3/8 in.) sieve

$$PP = 100.0\% - 20.0\% = 80.0\%$$

**Reported Percent Passing = 80%** 

### T 27\_T 11

# AGGREGATE

# WAQTC

# FOP AASHTO T 27 / T 11 (21)

| Sieve<br>Size<br>mm<br>(in.)                                                           | Cumulative<br>Mass<br>Retained<br>g<br>(CMR) | Determine CPR<br>by dividing CMR<br>by M and<br>multiplying by<br>100 | Cumulative<br>Percent<br>Retained<br>(CPR) | Determine PP<br>by subtracting<br>CPR from 100.0 | Percent<br>Passing<br>(PP) |
|----------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------|----------------------------|
| 16.0<br>(5/8)                                                                          | 0                                            |                                                                       | 0                                          |                                                  | 100                        |
| 12.5<br>(1/2)                                                                          | 161.1                                        | $\frac{161.1}{3214.0} \times 100 =$                                   | 5.0                                        | 100.0 - 5.0 =                                    | 95.0                       |
| 9.50<br>(3/8)                                                                          | 642.5                                        | $\frac{642.5}{3214.0} \times 100 =$                                   | 20.0                                       | 100.0 - 20.0 =                                   | 80.0                       |
| 4.75<br>(No. 4)                                                                        | 1118.3 (D)                                   | $\frac{1118.3}{3214.0} \times 100 =$                                  | 34.8                                       | 100.0 - 34.8 =                                   | 65.2                       |
| Minus 4.75<br>(No. 4)<br>in the pan                                                    | 1966.7 ( <i>M</i> 1)                         |                                                                       |                                            |                                                  |                            |
| CMR: 1118.3 + 1966.7 = 3085.0<br>Original dry mass of the sample <i>(M)</i> : 3214.0 g |                                              |                                                                       |                                            |                                                  |                            |

# Method B Cumulative Gradation on Coarse Sieves

# Fine Sample

The mass of minus 4.75 mm (No. 4) material in the pan,  $M_1$  (1966.7 g), was reduced according to the FOP for AASHTO R 76, to at least 500 g. In this case, the reduced mass was determined to be **512.8** g. This is  $M_2$ .

The reduced mass was sieved.

Total mass after fine sieving equals

Final Cumulative Mass Retained (FCMR) (includes minus75 μm (No. 200) from the pan):511.8 g

# **Fine Check Sum**

Fine Check Sum = 
$$\frac{512.8 \ g - 511.8 \ g}{512.8 \ g} \times 100 = 0.2\%$$

The result is less than 0.3 percent therefore the results can be used for acceptance purposes.

| 40 | T27 | T11 | short | 21 | errata |  |
|----|-----|-----|-------|----|--------|--|
|    |     |     |       |    |        |  |

Aggregate 12-20

FOP AASHTO T 27 / T 11 (21)

The cumulative mass of material retained for each sieve is multiplied by the adjustment factor (R) carried to three decimal places to obtain the *Adjusted Cumulative Mass Retained* (*ACMR*) and added to the cumulative mass retained on the 4.75 mm (No. 4) sieve, D, to obtain the *Total Cumulative Mass Retained* (*TCMR*).

Adjustment factor (*R*) for Adjusted Cumulative Mass Retained (ACMR) in minus 4.75 (No. 4) sieves.

$$R = \frac{M_1}{M_2} = \frac{1,966.7 \ g}{512.8 \ g} = 3.835$$

where:

R = minus 4.75 mm (No. 4) adjustment factor

 $M_1$  = total mass of minus 4.75 mm (No. 4) from the pan

 $M_2$  = mass of the reduced split of minus 4.75 mm (No. 4)

Adjusted Cumulative Mass Retained (ACMR) for the 2.00 mm (No. 10) sieve

 $ACMR = 3.835 \times 207.1 g = 794.2 g$ 

Total Cumulative Mass Retained (TCMR) for the 2.00 mm (No. 10) sieve

 $TCMR = 794.2 \ g + 1118.3 \ g = 1912.5 \ g$ 

Cumulative Percent Retained (CPR) for 2.00 mm (No. 10) sieve:

$$CPR = \frac{1912.5 \ g}{3214.0 \ g} \times 100 = 59.5\%$$

Percent Passing (PP) 2.00 mm (No. 10) sieve:

PP = 100.0% - 59.5% = 40.5%

**Reported Percent Passing = 41%** 

40 T27 T11 short 21 errata

Aggregate 12-21

WAQTC

# FOP AASHTO T 27 / T 11 (21)

| Sieve Size<br>mm<br>(in.) | Cumulative<br>Mass Retained,<br>g<br>(CMR) | Determine TCMR by<br>multiplying CMR by $R\left(\frac{M_1}{M_2}\right)$<br>and adding D | Total<br>Cumulative<br>Mass Retained<br>(TCMR) |
|---------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------|
| 2.00<br>(No. 10)          | 207.1                                      | 207.1 × 3.835 + 1118.3 =                                                                | 1912.5                                         |
| 0.425<br>(No. 40)         | 395.0                                      | 395.0 × 3.835 + 1118.3 =                                                                | 2633.1                                         |
| 0.210<br>(No. 80)         | 454.9                                      | 454.9 × 3.835 + 1118.3 =                                                                | 2862.8                                         |
| 0.075<br>(No. 200)        | 504.0                                      | 504.0 × 3.835 + 1118.3 =                                                                | 3051.1                                         |
| FCMR                      | 511.8                                      |                                                                                         |                                                |
| Total: sum of m           | asses on fine sieve                        | es + minus 75 μm (No. 200) ir                                                           | the pan = $511.8$                              |

# Method B Cumulative Gradation on Fine Sieves

40\_T27\_T11\_short\_21\_errata

Aggregate 12-22

# WAQTC

# FOP AASHTO T 27 / T 11 (21)

| Sieve Size<br>mm<br>(in.) | Total<br>Cumulative<br>Mass<br>Retained<br>g<br>(TCMR) | Determine CPR<br>by dividing CMR<br>by M and<br>multiplying by<br>100 | Cumulative<br>Percent<br>Retained<br>(CPR) | Determine PP<br>by subtracting<br>CPR from 100.0 | Percent<br>Passing<br>(PP) | Reported<br>Percent<br>Passing* |
|---------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------|----------------------------|---------------------------------|
| 16.0<br>(5/8)             | 0                                                      |                                                                       | 0                                          |                                                  | 100.0                      | 100                             |
| 12.5<br>(1/2)             | 161.1                                                  | $\frac{161.1}{3214.0} \times 100 =$                                   | 5.0                                        | 100.0 - 5.0 =                                    | 95.0                       | 95                              |
| 9.5<br>(3/8)              | 642.5                                                  | $\frac{642.5}{3214.0} \times 100 =$                                   | 20.0                                       | 100.0 - 20.0 =                                   | 80.0                       | 80                              |
| 4.75<br>(No. 4)           | 1118.3 (D)                                             | $\frac{1118.3}{3214.0} \times 100 =$                                  | 34.8                                       | 100.0 - 34.8 =                                   | 65.2                       | 65                              |
| 2.00<br>(No. 10)          | 1912.5                                                 | $\frac{1912.5}{3214.0} \times 100 =$                                  | 59.5                                       | 100.0 - 59.5 =                                   | 40.5                       | 41                              |
| 0.425<br>(No. 40)         | 2633.1                                                 | $\frac{2633.1}{3214.0} \times 100 =$                                  | 81.9                                       | 100.0 - 81.9 =                                   | 18.1                       | 18                              |
| 0.210<br>(No. 80)         | 2862.8                                                 | $\frac{2862.8}{3214.0} \times 100 =$                                  | 89.1                                       | 100.0 - 89.1 =                                   | 10.9                       | 11                              |
| 0.075<br>(No. 200)        | 3051.1                                                 | $\frac{3051.1}{3214.0} \times 100 =$                                  | 94.9                                       | 100.0 - 94.9 =                                   | 5.1                        | 5.1                             |
| FCMR                      | 3081.1                                                 |                                                                       |                                            |                                                  |                            |                                 |
| Original dr               | y mass of the                                          | sample (M): 3214.                                                     | 0 g                                        |                                                  |                            | u                               |

Method B Cumulative Final Gradation on All Sieves

\* Report total percent passing to 1 percent except report the 75  $\mu$ m (No. 200) sieve to 0.1 percent.

Aggregate 12-23

WAQTC

# **Procedure Method C**

- 1. Dry the sample to constant mass according to the FOP for AASHTO T 255. Cool to room temperature. Determine and record the original dry mass of the sample to the nearest 0.1 percent or 0.1 g. Designate this mass as *M*.
- 2. Break up any aggregations or lumps of clay, silt, or adhering fines to pass the 4.75 mm (No. 4) sieve.
- 3. Select sieves required by the specification and those necessary to avoid overloading as described in Annex B. With a pan on bottom, nest the sieves increasing in size starting with the 4.75 mm (No. 4) sieve.
- 4. Place the sample, or a portion of the sample, on the top sieve. Sieves may already be in the mechanical shaker, if not place the sieves in the mechanical shaker and shake for the minimum time determined to provide complete separation for the sieve shaker being used (approximately 10 minutes, the time determined by Annex A).

Note 1: Excessive shaking (more than 10 minutes) may result in degradation of the sample.

- 5. Determine and record the cumulative mass retained for each sieve. Ensure that all material trapped in full openings of the sieve are removed and included in the mass retained.
- *Note 2:* For sieves 4.75 mm (No. 4) and larger, check material trapped in less than a full opening sieving over a full opening. Use coarse wire brushes to clean the 600 μm (No. 30) and larger sieves, and soft bristle brush for smaller sieves.
- 6. Determine and record the mass of the minus 4.75 mm (No. 4) material in the pan. Designate this mass as  $M_1$ .
- 7. Perform the *Coarse Check Sum* calculation –Verify the *total mass after coarse sieving* agrees with the *original dry mass (M)* within 0.3 percent.
- 8. Reduce the minus 4.75 mm (No. 4) according to the FOP for AASHTO R 76, to produce a sample with a minimum mass of 500 g.
- 9. Determine and record the mass of the minus 4.75 mm (No. 4) split, designate this mass as  $M_3$ .
- 10. Nest a protective sieve, such as a 2.0 mm (No. 10), above the 75  $\mu$ m (No. 200) sieve.
- 11. Place the sample in a container and cover with water.
- *Note 3:* A detergent, dispersing agent, or other wetting solution may be added to the water to assure a thorough separation of the material finer than the 75 μm (No. 200) sieve from the coarser particles. There should be enough wetting agent to produce a small amount of suds when the sample is agitated. Excessive suds may overflow the sieves and carry material away with them.
- 12. Agitate vigorously to ensure complete separation of the material finer than 75 μm (No. 200) from coarser particles and bring the fine material into suspension above the coarser material. Avoid degradation of the sample when using a mechanical washing device.
- *Note 4:* Washing longer than 10 minutes in a mechanical washer has been shown to cause significant amounts of degradation depending upon aggregate type.

40\_T27\_T11\_short\_21\_errata

Aggregate 12-24

FOP AASHTO T 27 / T 11 (21)

- 13. Immediately pour the wash water containing the suspended material over the nested sieves; be careful not to pour out the coarser particles or over fill the 75  $\mu$ m (No. 200) sieve.
- 14. Add water to cover material remaining in the container, agitate, and repeat Step 12. Repeat until the wash water is reasonably clear.
- 15. Remove the upper sieve and return material retained to the washed sample.
- 16. Rinse the material retained on the 75  $\mu$ m (No. 200) sieve until water passing through the sieve is reasonably clear and detergent or dispersing agent is removed, if used.
- 17. Return all material retained on the 75  $\mu$ m (No. 200) sieve to the container by flushing into the washed sample.
- *Note 5:* Excess water may be carefully removed with a bulb syringe; the removed water must be discharged back over the 75 μm (No. 200) sieve to prevent loss of fines.
- 18. Dry the washed sample portion to constant mass according to the FOP for AASHTO T 255. Cool to room temperature. Determine and record the dry mass, designate this mass as *dry mass before sieving*.
- 19. Select sieves required by the specification and those necessary to avoid overloading as described in Annex B. With a pan on bottom, nest the sieves increasing in size starting with the 75  $\mu$ m (No. 200) sieve up to, but not including, the 4.75 mm (No. 4) sieve.
- 20. Place the sample portion on the top sieve. Place the sieves in the mechanical shaker and shake for the minimum time determined to provide complete separation for the sieve shaker being used (approximately 10 minutes, the time determined by Annex A).

Note 6: Excessive shaking (more than 10 minutes) may result in degradation of the sample.

- 21. Determine and record the cumulative mass retained for each sieve. Ensure that all material trapped in full openings of the sieve are removed and included in the mass retained.
- *Note 7:* For sieves 4.75 mm (No. 4) and larger, check material trapped in less than a full opening by sieving over a full opening. Use coarse wire brushes to clean the 600 μm (No. 30) and larger sieves, and soft bristle brushes for smaller sieves.
- 22. Perform the *Fine Check Sum* calculation Verify the *total mass after fine sieving* agrees with the *dry mass before sieving* within 0.3 percent. Do not use test results for acceptance if the *Check Sum* is greater than 0.3 percent.
- 23. Calculate the Cumulative Percent Retained (CPR) and Percent Passing (PP) for the 4.75 mm (No. 4) and larger.
- 24. Calculate the Cumulative Percent Retained (CPR-#4) and the Percent Passing (PP-#4) for minus 4.75 mm (No. 4) split and Percent Passing (PP) for the minus 4.75 mm (No. 4).
- 25. Report total percent passing to 1 percent except report the 75  $\mu$ m (No. 200) sieve to 0.1 percent.

Aggregate 12-25

WAQTC

# **Method C Calculations**

**Check Sum** 

 $Coarse \ check \ sum = \frac{M - total \ mass \ after \ coarse \ sieving}{M} \times 100$ 

$$Fine \ check \ sum = \frac{dry \ mass \ before \ sieving - total \ mass \ after \ fine \ sieving}{dry \ mass \ before \ sieving} \times 100$$

where:

# Cumulative Percent Retained (CPR) for 4.75 mm (No. 4) sieve and larger

$$CPR = \frac{CMR}{M} \times 100$$

where:

CPR = Cumulative Percent Retained of the size increment for the total sample
 CMR = Cumulative Mass Retained of the size increment for the total sample
 M = Total dry sample mass before washing

# Percent Passing (PP) 4.75 mm (No. 4) sieve and larger

$$PP = 100 - CPR$$

where:

PP = Percent Passing of the size increment for the total sample

CPR = Cumulative Percent Retained of the size increment for the total sample

40\_T27\_T11\_short\_21\_errata

Aggregate 12-26

Pub. October 2021

l

FOP AASHTO T 27 / T 11 (21)

AGGREGATE

Or, calculate PP for sieves larger than 4.75 mm (No. 4) sieve without calculating CPR

$$\frac{M-CMR}{M} \times 100$$

WAQTC

# Cumulative Percent Retained (CPR.#4) for minus 4.75 mm (No. 4) split

$$CPR_{-\#4} = \frac{CMR_{-\#4}}{M_3} \times 100$$

where:

| CPR-#4 | = Cumulative Percent Retained for the sieve sizes of M <sub>3</sub> |
|--------|---------------------------------------------------------------------|
| CMR-#4 | = Cumulative Mass Retained for the sieve sizes of M <sub>3</sub>    |
| M3     | = Total mass of the minus 4.75 mm (No. 4) split before washing      |

# Percent Passing (PP-#4) for minus 4.75 mm (No. 4) split

$$PP_{-\#4} = 100 - CPR_{-\#4}$$

where:

PP-#4 = Percent Passing for the sieve sizes of M<sub>3</sub> CPR-#4 = Cumulative Percent Retained for the sieve sizes of M<sub>3</sub>

### Percent Passing (PP) for sieves smaller than 4.75 mm (No. 4) sieve

$$PP = \frac{(PP_{-\#4} \times \#4 PP)}{100}$$

where:

| PP            | = Total Percent Passing                                 |
|---------------|---------------------------------------------------------|
| <b>PP</b> -#4 | = Percent Passing for the sieve sizes of M <sub>3</sub> |
| #4 PP         | = Total Percent Passing the 4.75 mm (No. 4) sieve       |

40\_T27\_T11\_short\_21\_errata

Aggregate 12-27

WAQTC

Or, calculate PP for sieves smaller than 4.75 mm (No. 4) sieve without calculating CPR-#4 and PP-#4

$$PP = \frac{\#4 \ PP}{M_3} \times (M_3 - CMR_{-\#4})$$

where:

| PP     | = Total Percent Passing                                          |
|--------|------------------------------------------------------------------|
| #4 PP  | = Total Percent Passing the 4.75 mm (No. 4) sieve                |
| M3     | = Total mass of the minus 4.75 mm (No. 4) split before washing   |
| CMR-#4 | = Cumulative Mass Retained for the sieve sizes of M <sub>3</sub> |

# Method C Example

| Original dry mass of the sample ( <i>M</i> ):                                                   | 3304.5 g |
|-------------------------------------------------------------------------------------------------|----------|
| Total mass after sieving equals                                                                 |          |
| Cumulative Mass Retained (CMR) on the 4.75 (No. 4) plus the minus 4.75 mm (No. 4) from the pan: | 3085.0 g |
|                                                                                                 | υ        |

# **Coarse Check Sum**

Coarse Check Sum = 
$$\frac{3304.5 \ g - 3304.5 \ g}{3304.5 \ g} \times 100 = 0.0\%$$

The result is less than 0.3 percent therefore the results can be used for acceptance purposes.

# Cumulative Percent Retained (CPR) for the 9.5 mm (3/8 in.) sieve:

$$CPR = \frac{604.1 \, g}{3304.5 \, g} \times 100 = 18.3\%$$

40\_T27\_T11\_short\_21\_errata

Aggregate 12-28

AGGREGATE

WAQTC

FOP AASHTO T 27 / T 11 (21)

Percent Passing (PP) for the 9.5 mm (3/8 in.) sieve:

$$PP = 100.0\% - 18.3\% = 81.7\%$$

**Reported Percent Passing = 82%** 

Example for Alternate Percent Passing (PP) formula for the 9.5 mm (3/8 in.) sieve:

$$PP = \frac{3304.5 - 604.1}{3304.5} \times 100 = 81.7\%$$

**Reported Percent Passing = 82%** 

| Sieve<br>Size<br>mm<br>(in.) | Cumulative<br>Mass<br>Retained,<br>g<br>(CMR)                                | Determine CPR<br>by dividing CMR<br>by M and<br>multiplying by<br>100 | Cumulative<br>Percent<br>Retained<br>(CPR) | Determine PP<br>by subtracting<br>CPR from 100.0 | Percent<br>Passing<br>(PP) | Reported<br>Percent<br>Passing* |  |  |
|------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------|----------------------------|---------------------------------|--|--|
| 16.0<br>(5/8)                | 0                                                                            |                                                                       | 0.0                                        |                                                  | 100.0                      | 100                             |  |  |
| 12.5<br>(1/2)                | 125.9                                                                        | $\frac{125.9}{3304.5} \times 100 =$                                   | 3.8                                        | 100.0 - 3.8 =                                    | 96.2                       | 96                              |  |  |
| 9.50<br>(3/8)                | 604.1                                                                        | $\frac{604.1}{3304.5} \times 100 =$                                   | 18.3                                       | 100.0 - 18.3 =                                   | 81.7                       | 82                              |  |  |
| 4.75<br>(No. 4)              | 1295.6                                                                       | $\frac{1295.6}{3304.5} \times 100 =$                                  | 39.2                                       | 100.0 - 39.2 =                                   | 60.8<br>(#4 PP)            | 61                              |  |  |
| Mass in pan                  | 2008.9                                                                       |                                                                       |                                            |                                                  |                            |                                 |  |  |
|                              | CMR: 1295.6 + 2008.9 = 3304.5<br>Original dry mass of the sample (M): 3304.5 |                                                                       |                                            |                                                  |                            |                                 |  |  |

# Method C Cumulative Gradation on Coarse Sieves

 $40\_T27\_T11\_short\_21\_errata$ 

Aggregate 12-29

Pub. October 2021

WAQTC

# **Fine Sample**

The pan (2008.9 g) was reduced according to the FOP for AASHTO R 76, to at least 500 g. In this case, the reduced mass was determined to be **527.6** g. This is  $M_3$ .

| Dry mass of minus 4.75mm (No. 4) reduced portion before wash $(M_3)$ : | 527.6 g |  |  |  |
|------------------------------------------------------------------------|---------|--|--|--|
| Dry mass of minus 4.75mm (No. 4) reduced portion after wash:           |         |  |  |  |
| Total mass after fine sieving equals                                   |         |  |  |  |
| Final Cumulative Mass Retained (FCMR)                                  |         |  |  |  |
| (includes minus 75 µm (No. 200) from the pan):                         | 495.1 g |  |  |  |

# **Fine Check Sum**

Fine Check Sum = 
$$\frac{495.3 \ g - 495.1 \ g}{495.3 \ g} \times 100 = 0.04\%$$

The result is less than 0.3 percent therefore the results can be used for acceptance purposes.

# Cumulative Percent Retained (CPR<sub>#4</sub>) for minus 4.75 mm (No. 4) for the 2.0 mm (No. 10) sieve:

$$CPR_{-\#4} = \frac{194.3 \ g}{527.6 \ g} \times 100 = 36.8\%$$

Percent Passing (PP<sub>-#4</sub>) for minus 4.75 mm (No. 4) for the 2.0 mm (No. 10) sieve:

$$PP_{-\#4} = 100.0\% - 36.8\% = 63.2\%$$

40\_T27\_T11\_short\_21\_errata

Aggregate 12-30

77

### AGGREGATE

# WAQTC

| Gradation on Fine Sieves                                                                |                                                           |                                                                                                      |                                                  |                                                              |                                      |  |  |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------|--------------------------------------|--|--|
| Sieve<br>Size<br>mm<br>(in.)                                                            | Cumulative<br>Mass<br>Retained g<br>(CMR <sub>-#4</sub> ) | Determine<br>CPR. <sub>#4</sub> by<br>dividing CMR<br>by M <sub>3</sub> and<br>multiplying by<br>100 | Cumulative<br>Percent<br>Retained-#4<br>(CPR.#4) | Determine<br>PP.#4 by<br>subtracting<br>CPR.#4 from<br>100.0 | Percent<br>Passing-<br>#4<br>(PP-#4) |  |  |
| 2.0<br>(No. 10)                                                                         | 194.3                                                     | $\frac{194.3}{527.6} \times 100 =$                                                                   | 36.8                                             | 100.0 - 36.8<br>=                                            | 63.2                                 |  |  |
| 0.425<br>(No. 40)                                                                       | 365.6                                                     | $\frac{365.6}{527.6} \times 100 =$                                                                   | 69.3                                             | 100.0 – 69.3<br>=                                            | 30.7                                 |  |  |
| 0.210<br>(No. 80)                                                                       | 430.8                                                     | $\frac{430.8}{527.6} \times 100 =$                                                                   | 81.7                                             | 100.0 – 81.7<br>=                                            | 18.3                                 |  |  |
| 0.075<br>(No. 200)                                                                      | 484.4                                                     | $\frac{484.4}{527.6} \times 100 =$                                                                   | 91.8                                             | 100.0 – 91.8<br>=                                            | 8.2                                  |  |  |
| FCMR                                                                                    | 495.1                                                     |                                                                                                      |                                                  |                                                              |                                      |  |  |
| Dry mass of minus 4.75mm (No. 4) reduced portion before wash (M <sub>3</sub> ): 527.6 g |                                                           |                                                                                                      |                                                  |                                                              |                                      |  |  |
| Dry mass aft                                                                            | Dry mass after washing: 495.3 g                           |                                                                                                      |                                                  |                                                              |                                      |  |  |

# Method C Cumulative Gradation on Fine Sieves

# Percent Passing (PP) for the 2.0 mm (No. 10) sieve for the entire sample:

78

#4 PP (Total Percent Passing the 4.75 mm (No. 4) sieve) = 60.8%

$$PP = \frac{63.2\% \times 60.8\%}{100} = 38.4\%$$

**Reported Percent Passing = 38%** 

40 T27 T11 short 21 errata

Aggregate 12-31

### T 27\_T 11

# AGGREGATE

# WAQTC

# FOP AASHTO T 27 / T 11 (21)

| Sieve Size<br>mm<br>(in.) | Cumulative<br>Mass<br>Retained<br>g<br>(CMR) | Cumulative<br>Percent<br>Retained<br>(CPR) | Percent<br>Passing<br>(PP -#4) | Determine PP<br>by multiplying<br>PP.#4 by<br>#4 PP and<br>dividing by<br>100 | Percent<br>Passing<br>(PP) | Reported<br>Percent<br>Passing* |
|---------------------------|----------------------------------------------|--------------------------------------------|--------------------------------|-------------------------------------------------------------------------------|----------------------------|---------------------------------|
| 16.0<br>(5/8)             | 0                                            | 0.0                                        |                                |                                                                               | 100.0                      | 100                             |
| 12.5<br>(1/2)             | 125.9                                        | 3.8                                        |                                |                                                                               | 96.2                       | 96                              |
| 9.5<br>(3/8)              | 604.1                                        | 18.3                                       |                                |                                                                               | 81.7                       | 82                              |
| 4.75<br>(No. 4)           | 1295.6                                       | 39.2                                       |                                |                                                                               | 60.8<br>(#4 PP)            | 61                              |
| 2.0<br>(No. 10)           | 194.3                                        | 36.8                                       | 63.2                           | $\frac{63.2 \times 60.8}{100} =$                                              | 38.4                       | 38                              |
| 0.425<br>(No. 40)         | 365.6                                        | 69.3                                       | 30.7                           | $\frac{30.7 \times 60.8}{100} =$                                              | 18.7                       | 19                              |
| 0.210<br>(No. 80)         | 430.8                                        | 81.7                                       | 18.3                           | $\frac{18.3 \times 60.8}{100} =$                                              | 11.1                       | 11                              |
| 0.075<br>(No. 200)        | 484.4                                        | 91.8                                       | 8.2                            | $\frac{8.2 \times 60.8}{100} =$                                               | 5.0                        | 5.0                             |
| FCMR                      | 495.1                                        |                                            |                                |                                                                               |                            |                                 |

Method C Cumulative Final Gradation on All Sieves

\* Report total percent passing to 1 percent except report the 75 µm (No. 200) sieve to 0.1 percent.

AGGREGATE

FOP AASHTO T 27 / T 11 (21)

Example for Alternate Percent Passing (PP) for the 4.75 mm (No. 4) sieve for the entire sample:

#4 PP (Total Percent Passing the 4.75 mm (No. 4) sieve) = 60.8%

$$PP = \frac{60.8\%}{527.6} \times (527.6 - 194.3) = 38.4\%$$

**Reported Percent Passing = 38%** 

| Sieve<br>Size<br>mm<br>(in.)                     | Cumulative<br>Mass<br>Retained,<br>g<br>(CMR) | Determine PP by subtracting<br>CMR from M, and dividing<br>the result by M then multiply<br>by 100 | Percent<br>Passing<br>(PP) | Reported<br>Percent<br>Passing* |  |  |
|--------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------|---------------------------------|--|--|
| 16.0<br>(5/8)                                    | 0.0                                           |                                                                                                    | 100.0                      | 100                             |  |  |
| 12.5<br>(1/2)                                    | 125.9                                         | $\frac{3304.5 - 125.9}{3304.5} \times 100 =$                                                       | 96.2                       | 96                              |  |  |
| 9.5<br>(3/8)                                     | 604.1                                         | $\frac{3304.5 - 604.1}{3304.5} \times 100 =$                                                       | 81.7                       | 82                              |  |  |
| 4.75<br>(No. 4)                                  | 1295.6                                        | $\frac{3304.5 - 1295.6}{3304.5} \times 100 =$                                                      | 60.8<br>(#4 PP)            | 61                              |  |  |
| Mass in<br>Pan                                   | 2008.9                                        |                                                                                                    |                            |                                 |  |  |
| Cumulative sieved mass: 1295.6 + 2008.9 = 3304.5 |                                               |                                                                                                    |                            |                                 |  |  |
| Original dry mass of the sample (M): 3304.5      |                                               |                                                                                                    |                            |                                 |  |  |

# Alternate Method C Cumulative Gradation on Coarse Sieves

 $40\_T27\_T11\_short\_21\_errata$ 

Aggregate 12-33

# WAQTC

# FOP AASHTO T 27 / T 11 (21)

| Sieve<br>Size<br>mm<br>(in.)                                                            | Cumulative<br>Mass Retained<br>g<br>(CMR.#4) | Determine PP <sub>-#4</sub> by subtracting<br>CMR <sub>-#4</sub> from M <sub>3</sub> , dividing<br>result by M <sub>3</sub> and multiplying<br>by 100 | Percent<br>Passing.#4<br>(PP.#4) |  |  |  |  |
|-----------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|--|--|--|
| 2.0<br>(No. 10)                                                                         | 194.3                                        | $\frac{527.6 - 194.3}{527.6} \times 100 =$                                                                                                            | 63.2                             |  |  |  |  |
| 0.425<br>(No. 40)                                                                       | 365.6                                        | $\frac{527.6 - 365.6}{527.6} \times 100 =$                                                                                                            | 30.7                             |  |  |  |  |
| 0.210<br>(No. 80)                                                                       | 430.8                                        | $\frac{527.6 - 430.8}{527.6} \times 100 =$                                                                                                            | 18.3                             |  |  |  |  |
| 0.075<br>(No. 200)                                                                      | 484.4                                        | $\frac{527.6 - 484.4}{527.6} \times 100 =$                                                                                                            | 8.2                              |  |  |  |  |
| FCMR                                                                                    | 495.1                                        |                                                                                                                                                       |                                  |  |  |  |  |
| Dry mass of minus 4.75mm (No. 4) reduced portion before wash (M <sub>3</sub> ): 527.6 g |                                              |                                                                                                                                                       |                                  |  |  |  |  |
| Dry mass after washing: 495.3 g                                                         |                                              |                                                                                                                                                       |                                  |  |  |  |  |

# Alternate Method C Cumulative Gradation on Fine Sieves

# AGGREGATE

| Sieve Size<br>mm<br>(in.) | Percent<br>Passing.#4<br>(PP.#4) | Determine PP by<br>multiplying PP. <sub>#4</sub><br>by<br>#4 PP and<br>dividing by 100 | Determined<br>Percent<br>Passing<br>(PP) | Reported<br>Percent<br>Passing* |
|---------------------------|----------------------------------|----------------------------------------------------------------------------------------|------------------------------------------|---------------------------------|
| 16.0<br>(5/8)             |                                  |                                                                                        | 100.0                                    | 100                             |
| 12.5<br>(1/2)             |                                  |                                                                                        | 96.2                                     | 96                              |
| 9.5<br>(3/8)              |                                  |                                                                                        | 81.7                                     | 82                              |
| 4.75<br>(No. 4)           |                                  |                                                                                        | 60.8<br>(#4 PP)                          | 61                              |
| 2.0<br>(No. 10)           | 63.2                             | $\frac{63.2 \times 60.8}{100} =$                                                       | 38.4                                     | 38                              |
| 0.425<br>(No. 40)         | 30.7                             | $\frac{30.7 \times 60.8}{100} =$                                                       | 18.7                                     | 19                              |
| 0.210<br>(No. 80)         | 18.3                             | $\frac{18.3 \times 60.8}{100} =$                                                       | 11.1                                     | 11                              |
| 0.075<br>(No. 200)        | 8.2                              | $\frac{8.2 \times 60.8}{100} =$                                                        | 5.0                                      | 5.0                             |

# Alternate Method C Cumulative Final Gradation on All Sieves

\* Report total percent passing to 1 percent except report the 75 µm (No. 200) sieve to 0.1 percent.

40\_T27\_T11\_short\_21\_errata

Aggregate 12-35

WAQTC

# FINENESS MODULUS

Fineness Modulus (FM) is used in determining the degree of uniformity of the aggregate gradation in PCC mix designs. It is an empirical number relating to the fineness of the aggregate. The higher the FM the coarser the aggregate. Values of 2.40 to 3.00 are common for fine aggregate in PCC.

The sum of the cumulative percentages retained on specified sieves in the following table divided by 100 gives the FM.

|              | Example A<br>Percent |     |                | ]       | Exampl   | e B            |
|--------------|----------------------|-----|----------------|---------|----------|----------------|
|              |                      |     |                | Percent |          |                |
|              |                      | R   | etained        |         | Retained |                |
| Sieve Size   |                      |     | On Spec'd      |         |          | On Spec'd      |
| mm (in)      | Passing              |     | Sieves*        | Passing |          | Sieves*        |
| 75*(3)       | 100                  | 0   | 0              | 100     | 0        | 0              |
| 37.5*(11/2)  | 100                  | 0   | 0              | 100     | 0        | 0              |
| 19*(3/4)     | 15                   | 85  | 85             | 100     | 0        | 0              |
| 9.5*(3/8)    | 0                    | 100 | 100            | 100     | 0        | 0              |
| 4.75*(No.4)  | 0                    | 100 | 100            | 100     | 0        | 0              |
| 2.36*(No.8)  | 0                    | 100 | 100            | 87      | 13       | 13             |
| 1.18*(No.16) | 0                    | 100 | 100            | 69      | 31       | 31             |
| 0.60*(No.30  | 0                    | 100 | 100            | 44      | 56       | 56             |
| 0.30*(No.50) | 0                    | 100 | 100            | 18      | 82       | 82             |
| 0.15*(100)   | 0                    | 100 | 100            | 4       | 96       | 96             |
|              |                      |     | $\Sigma = 785$ |         |          | $\Sigma = 278$ |
|              |                      |     | FM = 7.85      |         |          | FM = 2.78      |

# **Sample Calculation**

In decreasing size order, each \* sieve is one-half the size of the preceding \* sieve.

40\_T27\_T11\_short\_21\_errata

Aggregate 12-36

# WAQTC

### FOP AASHTO T 27 / T 11 (21)

# Report

- On forms approved by the agency
- Sample ID
- Percent passing for each sieve
- Individual mass retained for each sieve
- Individual percent retained for each sieve

or

- Cumulative mass retained for each sieve
- Cumulative percent retained for each sieve
- FM to the nearest 0.01

Report percentages to the nearest 1 percent except for the percent passing the 75  $\mu$ m (No. 200) sieve, which shall be reported to the nearest 0.1 percent.

40\_T27\_T11\_short\_21\_errata

Aggregate 12-37

# ANNEX A Time Evaluation

# (Mandatory information)

The sieving time for each mechanical sieve shaker shall be checked at least annually to determine the time required for complete separation of the sample by the following method:

- 1. Shake the sample over nested sieves for approximately 10 minutes.
- 2. Provide a snug-fitting pan and cover for each sieve and hold in a slightly inclined position in one hand.
- 3. Hand shake each sieve by striking the side of the sieve sharply and with an upward motion against the heel of the other hand at the rate of about 150 times per minute, turning the sieve about one sixth of a revolution at intervals of about 25 strokes.

*Note A1:* A mallet may be used instead of the heel of the hand if comparable force is used.

If more than 0.5 percent by mass of the total sample before sieving passes any sieve after one minute of continuous hand shaking adjust shaker time and re-check.

In determining sieving time for sieve sizes larger than 4.75 mm (No. 4), limit the material on the sieve to a single layer of particles.

40 T27 T11 short 21 errata

Aggregate 12-38

# ANNEX B Overload Determination

(Mandatory information)

Additional sieves may be necessary to keep from overloading sieves or to provide other information, such as fineness modulus. The sample may also be sieved in increments to prevent overloading.

- For sieves with openings smaller than 4.75 mm (No. 4), the mass retained on any sieve shall not exceed 7 kg/m<sup>2</sup> (4 g/in<sup>2</sup>) of sieving surface.
- For sieves with openings 4.75 mm (No. 4) and larger, the mass, in grams shall not exceed the product of 2.5 × (sieve opening in mm) × (effective sieving area). See Table B1.

# TABLE B1

# Maximum Allowable Mass of Material Retained on a Sieve, g Nominal Sieve Size, mm (in.) Exact size is smaller (see AASHTO T 27)

| Siev  | Sieve Size |        | 305 dia | 305 by 305   | 350 by 350     | 372 by 580 |  |
|-------|------------|--------|---------|--------------|----------------|------------|--|
| mm    | ı (in.)    | (8)    | (12)    | (12 × 12)    | (14 × 14)      | (16 × 24)  |  |
|       |            |        |         | Sieving Area | m <sup>2</sup> |            |  |
|       |            | 0.0285 | 0.0670  | 0.0929       | 0.1225         | 0.2158     |  |
| 90    | (3 1/2)    | *      | 15,100  | 20,900       | 27,600         | 48,500     |  |
| 75    | (3)        | *      | 12,600  | 17,400       | 23,000         | 40,500     |  |
| 63    | (2 1/2)    | *      | 10,600  | 14,600       | 19,300         | 34,000     |  |
| 50    | (2)        | 3600   | 8400    | 11,600       | 15,300         | 27,000     |  |
| 37.5  | (1 1/2)    | 2700   | 6300    | 8700         | 11,500         | 20.200     |  |
| 25.0  | (1)        | 1800   | 4200    | 5800         | 7700           | 13,500     |  |
| 19.0  | (3/4)      | 1400   | 3200    | 4400         | 5800           | 10,200     |  |
| 16.0  | (5/8)      | 1100   | 2700    | 3700         | 4900           | 8600       |  |
| 12.5  | (1/2)      | 890    | 2100    | 2900         | 3800           | 6700       |  |
| 9.5   | (3/8)      | 670    | 1600    | 2200         | 2900           | 5100       |  |
| 6.3   | (1/4)      | 440    | 1100    | 1500         | 1900           | 3400       |  |
| 4.75  | (No. 4)    | 330    | 800     | 1100         | 1500           | 2600       |  |
| -4.75 | (-No. 4)   | 200    | 470     | 650          | 860            | 1510       |  |

40\_T27\_T11\_short\_21\_errata

Aggregate 12-39

WAQTC

40\_T27\_T11\_short\_21\_errata

Aggregate 12-40

### WAQTC

FOP AASHTO T 27/T 11 (17)

### PERFORMANCE EXAM CHECKLIST

# METHOD A SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES FOP FOR AASHTO T 27 MATERIALS FINER THAN 75 $\mu m$ (No. 200) SIEVE IN MINERAL AGGREGATE BY WASHING FOP FOR AASHTO T 11

Participant Name \_\_\_\_\_ Exam Date \_\_\_\_\_

Record the symbols "P" for passing or "F" for failing on each step of the checklist.

| Pr | ocedure Element                                                                                                      | Trial 1 | Trial 2 |
|----|----------------------------------------------------------------------------------------------------------------------|---------|---------|
| 1. | Minimum sample mass meets requirement of Table 1?                                                                    |         |         |
| 2. | Sample dried to a constant mass by FOP for AASHTO T 255?                                                             |         |         |
| 3. | Sample cooled, and original dry mass of the sample recorded to the nearest 0.1 percent or 0.1 g?                     |         |         |
| 4. | Sample placed in container and covered with water?                                                                   |         |         |
| 5. | Contents of the container vigorously agitated?                                                                       |         |         |
| 6. | Suspension of minus 75 µm (No. 200) achieved?                                                                        |         |         |
| 7. | Wash water poured through nested sieves such as 2 mm (No. 10) and 75 $\mu$ m (No. 200)?                              |         |         |
| 8. | Operation continued until wash water is reasonably clear?                                                            |         |         |
| 9. | Material retained on sieves returned to washed sample?                                                               |         |         |
| 10 | . Washed sample dried to a constant mass by FOP for AASHTO T 255?                                                    |         |         |
| 11 | Washed sample cooled, and dry mass recorded to the nearest 0.1 percent or 0.1 g?                                     |         |         |
| 12 | Sample placed in nest of sieves specified? (Additional sieves may be used to prevent overloading as allowed in FOP.) |         |         |
| 13 | Material sieved in verified mechanical shaker for proper time?                                                       |         |         |
| 14 | Mass of material on each sieve and pan recorded to 0.1 g?                                                            |         |         |
| 15 | . Total mass of material after sieving agrees with mass before sieving to within 0.3 percent (check sum)?            |         |         |

### **OVER**

27\_T27\_T11\_pr\_MA\_17

| AGGREGATE        |                  | WAQTC                                        | FOP AAS                                  | SHTO T 27/T 11 (17) |
|------------------|------------------|----------------------------------------------|------------------------------------------|---------------------|
| Procedure Elen   | ient             |                                              |                                          | Trial 1 Trial 2     |
| the nearest w    |                  | e nearest 0.1 percent<br>xcept 75 μm (No. 20 | and reported to<br>00) which is reported |                     |
| 17. Percentage c | alculations base | d on original dry ma                         | ass of the sample?                       |                     |
| 18. Calculations | performed prop   | erly?                                        |                                          |                     |
| Comments:        | First attempt:   | PassFail                                     | Second attempt:                          | PassFail            |
| Examiner Si      | ignature         |                                              | WAQTC #:                                 |                     |

Aggregate 6-48

### WAQTC

FOP AASHTO T 27/T 11 (17)

# PERFORMANCE EXAM CHECKLIST

# METHOD B SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES FOP FOR AASHTO T 27 MATERIALS FINER THAN 75 $\mu m$ (No. 200) SIEVE IN MINERAL AGGREGATE BY WASHING FOP FOR AASHTO T 11

Participant Name \_\_\_\_\_ Exam Date \_\_\_\_\_

Record the symbols "P" for passing or "F" for failing on each step of the checklist.

| Pr | ocedure Element                                                                                                      | Trial 1 | Trial 2 |
|----|----------------------------------------------------------------------------------------------------------------------|---------|---------|
| 1. | Minimum sample mass meets requirement of Table 1?                                                                    |         |         |
| 2. | Sample dried to a constant mass by FOP for AASHTO T 255?                                                             |         |         |
| 3. | Sample cooled, and original dry mass of the sample recorded to the nearest 0.1 percent or 0.1 g?                     |         |         |
| 4. | Sample placed in container and covered with water?                                                                   |         |         |
| 5. | Contents of the container vigorously agitated?                                                                       |         |         |
| 6. | Suspension of minus 75 µm (No. 200) achieved?                                                                        |         |         |
| 7. | Wash water poured through nested sieves such as 2 mm (No. 10) and 75 $\mu$ m (No. 200)?                              |         |         |
| 8. | Operation continued until wash water is reasonably clear?                                                            |         |         |
| 9. | Material retained on sieves returned to washed sample?                                                               |         |         |
| 10 | Washed sample dried to a constant mass by FOP for AASHTO T 255?                                                      |         |         |
| 11 | Washed sample cooled, and dry mass recorded to nearest 0.1 percent or 0.1 g?                                         |         |         |
| 12 | Sample placed in nest of sieves specified? (Additional sieves may be used to prevent overloading as allowed in FOP.) |         |         |
| 13 | Material sieved in verified mechanical shaker for proper time?                                                       |         |         |
| 14 | Mass of material on each sieve and pan determined to the nearest 0.1 percent or 0.1 g?                               |         |         |
| 15 | . Total mass of material after sieving agrees with mass before sieving to within 0.3 percent (coarse check sum)?     |         |         |

# **OVER**

28\_T27\_T11\_pr\_MB\_17

Aggregate 6-49

| Procedure Element                                                                                                                                                         | Trial 1 | Trial 2 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|
| 16. Material in pan reduced in accordance with FOP for AASHTO R 76 to at least 500 g?                                                                                     |         |         |
| 17. Mass of minus 4.75 mm (No. 4) split recorded to the nearest 0.1 g?                                                                                                    |         |         |
| <ol> <li>Sample placed in nest of sieves specified? (Additional sieves may<br/>be used to prevent overloading as allowed in FOP.)</li> </ol>                              |         |         |
| 19. Material sieved in verified mechanical shaker for proper time?                                                                                                        |         |         |
| 20. Mass of material on each sieve and pan recorded to the nearest percent or 0.1 g?                                                                                      |         |         |
| 21. Total mass of material after sieving agrees with mass before sieving to within 0.3 percent (fine check sum)?                                                          |         |         |
| 22. Percentages calculated to the nearest 0.1 percent and reported to<br>the nearest whole number, except 75 μm (No.200) which is<br>reported to the nearest 0.1 percent? |         |         |
| 23. Percentage calculations based on original dry mass of the sample?                                                                                                     |         |         |
| 24. Calculations performed properly?                                                                                                                                      |         |         |
| Comments: First attempt: PassFailSecond attempt: P                                                                                                                        | assF    | Fail    |
|                                                                                                                                                                           |         |         |
|                                                                                                                                                                           |         |         |
| Examiner Signature WAQTC #:                                                                                                                                               |         |         |

WAQTC

28\_T27\_T11\_pr\_MB\_17

Aggregate 6-50

Pub. October 2021

FOP AASHTO T 27/T 11 (17)

# WSDOT Errata to FOP for AASHTO T 30

# Mechanical Analysis of Extracted Aggregate

WAQTC FOP for AASHTO T 30 has been adopted by WSDOT with the following changes:

# Procedure

17. Step not recognized by WSDOT.

### WAQTC

### FOP AASHTO T 30 (21)

# MECHANICAL ANALYSIS OF EXTRACTED AGGREGATE FOP FOR AASHTO T 30

# Scope

This procedure covers mechanical analysis of aggregate recovered from asphalt mix samples in accordance with AASHTO T 30-21. This FOP uses the aggregate recovered from the ignition furnace used in AASHTO T 308. AASHTO T 30 was developed for analysis of extracted aggregate and thus includes references to extracted bitumen and filter element, which do not apply in this FOP.

Sieve analyses determine the gradation or distribution of aggregate particles within a given sample in order to determine compliance with design and production standards.

# Apparatus

- Balance or scale: Capacity sufficient for the sample mass, accurate to 0.1 percent of the sample mass or readable to 0.1 g
- Sieves, meeting the requirements of FOP for AASHTO T 27/T 11.
- Mechanical sieve shaker, meeting the requirements of FOP for AASHTO T 27/T 11.
- Mechanical Washing Apparatus (optional)
- Suitable drying equipment, meeting the requirements of the FOP for AASHTO T 255.
- Containers and utensils: A pan or vessel of a size sufficient to contain the sample covered with water and to permit vigorous agitation without loss of any part of the sample or water.

# Sample Sieving

- In this procedure, it is required to shake the sample over nested sieves. Sieves are selected to furnish information required by specification. Intermediate sieves are added for additional information or to avoid overloading sieves, or both.
- The sieves are nested in order of increasing size from the bottom to the top, and the test sample, or a portion of the test sample, is placed on the top sieve.
- The loaded sieves are shaken in a mechanical shaker for approximately 10 minutes, refer to Annex A; *Time Evaluation*.

### **Mass Verification**

The aggregate sample mass,  $M_{(T30)}$ , determined in this method, shall agree with the mass of the aggregate remaining after ignition,  $M_f$  from the FOP for AASTHO T 308, within 0.10 percent. If the variation exceeds 0.10 percent, the results cannot be used for acceptance.

# ASPHALT

WAQTC

# Procedure

- 1. Determine and record the mass of the sample that was removed from the basket in the FOP for AASHTO T 308 to 0.1 g. Designate this mass as  $M_{(T30)}$ .
- 2. Verify the mass of the sample is within 0.10 percent by subtracting  $M_{(T30)}$  from  $M_{f(T308)}$  dividing by  $M_{f(T308)}$  and multiply by 100 (see *Mass Verification Calculation* and example).

If the variation exceeds 0.10 percent, the sieve analysis results <u>cannot</u> be used for acceptance.

- 3. Nest a sieve, such as a 2.0 mm (No. 10) or 1.18 mm (No. 16), above the 75μm (No. 200) sieve.
- 4. Place the test sample in a container and cover with water. Add a detergent, dispersing agent, or other wetting solution to the water to assure a thorough separation of the material finer than the 75µm (No. 200) sieve from the coarser particles. There should be enough wetting agent to produce a small amount of suds when the sample is agitated. Excessive suds may overflow the sieves and carry material away with them.
- 5. Agitate vigorously to ensure complete separation of the material finer than 75μm (No. 200) from coarser particles and bring the fine material into suspension above the coarser material. Avoid degradation of the sample when using a mechanical washing device. Maximum agitation is 10 min.
- *Note 1:* When mechanical washing equipment is used, the introduction of water, agitating, and decanting may be a continuous operation. Use care not to overflow or overload the 75µm (No. 200) sieve.
- 6. Immediately pour the wash water containing the suspended material over the nested sieves; be careful not to pour out the coarser particles or over fill the 75  $\mu$ m (No. 200) sieve.
- 7. Add water to cover material remaining in the container, agitate, and repeat Step 6. Continue until the wash water is reasonably clear.
- 8. Remove the upper sieve, return material retained to the washed sample.
- 9. Rinse the material retained on the 75  $\mu$ m (No. 200) sieve until water passing through the sieve is reasonably clear and detergent or dispersing agent is removed.
- 10. Return all material retained on the 75  $\mu$ m (No. 200) sieve to the washed sample by rinsing into the washed sample.
- Dry the washed test sample to constant mass according to the FOP for AASHTO T 255. Cool to room temperature. Determine and record the "dry mass after washing."
- 12. Select sieves required by the specification and those necessary to avoid overloading. (See Annex B.) With a pan on bottom, nest the sieves increasing in size starting with the 75  $\mu$ m (No. 200).
- 13. Place the test sample, or a portion of the test sample, on the top sieve. Place sieves in mechanical shaker and shake for the minimum time determined to provide complete separation for the sieve shaker being used (approximately 10 minutes, the time determined by Annex A).

```
52_T30_short_21_errata
```

Asphalt 20-2

*Note 2:* Excessive shaking (more than 10 minutes) may result in degradation of the sample.

- 14. Determine and record the individual or cumulative mass retained for each sieve including the pan. Ensure that all material trapped in full openings of the sieves are removed and included in the mass retained.
- *Note 3:* For sieves 4.75 mm (No. 4) and larger, check material trapped in less than a full opening by sieving over a full opening. Use coarse wire brushes to clean the 600 µm (No. 30) and larger sieves, and soft bristle brushes for smaller sieves.
- 15. Perform the *Check Sum* calculation Verify the *total mass after sieving* of material agrees with the *dry mass after washing* within 0.2 percent. Do not use test results for acceptance if the *Check Sum* result is greater than 0.2 percent.
- 16. Calculate the total percentages passing, and the individual or cumulative percentages retained, to the nearest 0.1 percent by dividing the individual sieve masses or cumulative sieve masses by the total mass of the initial dry sample.
- 17. Apply the Aggregate Correction Factor (ACF) to the calculated percent passing, as required in the FOP for AASHTO T 308 "Correction Factor," to obtain the reported percent passing.
- 18. Report total percent passing to 1 percent except report the 75  $\mu$ m (No. 200) sieve to 0.1 percent.

# Calculations

Mass verification

Mass verification = 
$$\frac{M_{f(T308)} - M_{(T30)}}{M_{f(T308)}} \times 100$$

Where:

| M <sub>f(T308)</sub> | <ul> <li>Mass of aggregate remaining after ignition from<br/>the FOP for AASHTO T 308</li> </ul> |
|----------------------|--------------------------------------------------------------------------------------------------|
| M(T30)               | <ul> <li>Mass of aggregate sample obtained from the<br/>FOP for AASHTO T 308</li> </ul>          |

### **Check Sum**

 $check \ sum = \frac{dry \ mass \ after \ washing - total \ mass \ after \ sieving}{dry \ mass \ after \ washing} \times 100$ 

52\_T30\_short\_21\_errata

Asphalt 20-3

T 30

### ASPHALT

WAQTC

**Percent Retained** 

Individual

$$IPR = \frac{IMR}{M_{T30}} \times 100$$

Cumulative

$$CPR = \frac{CMR}{M_{T30}} \times 100$$

Where:

| IPR  | = | Individual Percent Retained          |
|------|---|--------------------------------------|
| CPR  | = | Cumulative Percent Retained          |
| Мтзо | = | Total dry sample mass before washing |
| IMR  | = | Individual Mass Retained             |
| CMR  | = | Cumulative Mass Retained             |

**Percent Passing** 

Individual

Cumulative

PP = PCP - IPR

PP = 100 - CPR

Where:

| PP  | = | Calculated Percent Passing          |
|-----|---|-------------------------------------|
| PCP | = | Previous Calculated Percent Passing |

52\_T30\_short\_21\_errata

Asphalt 20-4

### ASPHALT

### FOP AASHTO T 30 (21)

# **Reported Percent Passing**

$$RPP = PP + ACF$$

Where:

RPP = Reported Percent Passing ACF = Aggregate Correction Factor (if applicable)

# Example

**Mass verification** 

Mass verification = 
$$\frac{2422.5 g - 2422.3 g}{2422.5 g} \times 100 = 0.01\%$$

Given:

$$M_{f(T308)} = 2422.5 \text{ g}$$
  
$$M_{(T30)} = 2422.3 \text{ g}$$

| Dry mass of total sample, before washing (M <sub>T30</sub> ):         | 2422.3 g |
|-----------------------------------------------------------------------|----------|
| Dry mass of sample, after washing out the 75 $\mu$ m (No. 200) minus: | 2296.2 g |
| Amount of 75 $\mu$ m (No. 200) minus washed out (2422.3 g – 2296.2g): | 126.1 g  |

# Check sum

check sum = 
$$\frac{2296.2 \ g - 2295.3 \ g}{2296.2 \ g} \times 100 = 0.04\%$$

This is less than 0.2 percent therefore the results can be used for acceptance purposes.

 $52\_T30\_short\_21\_errata$ 

Asphalt 20-5

# ASPHALT

WAQTC

Percent Retained for the 75 µm (No. 200) sieve

$$IPR = \frac{63.5 g}{2422.3 g} \times 100 = 2.6\%$$
or
$$CPR = \frac{2289.6 g}{2422.3 g} \times 100 = 94.5\%$$

Percent Passing using IPR and PCP for the 75  $\mu m$  (No. 200) sieve

$$PP = 8.1\% - 2.6\% = 5.5\%$$

Percent Passing using CPR for the 75 µm (No. 200) sieve

PP = 100.0% - 94.5% = 5.5%

**Reported Percent Passing** 

RPP = 5.5% + (-0.6%) = 4.9%

52\_T30\_short\_21\_errata

Asphalt 20-6

## WAQTC

# FOP AASHTO T 30 (21)

| Sieve Size<br>mm (in.)                    | Individual<br>Mass<br>Retained<br>g<br>(IMR) | Determine IPR by<br>dividing IMR by<br><i>M</i> and<br>multiplying by<br>100 | Individual<br>Percent<br>Retained<br>(IPR) | Determine PP<br>by subtracting<br>IPR from<br>Previous PP | Percent<br>Passing<br>(PP) | Agg.<br>Corr.<br>Factor<br>from<br>T 308<br>(ACF) | Reported<br>Percent<br>Passing* |
|-------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------|----------------------------|---------------------------------------------------|---------------------------------|
| 19.0<br>(3/4)                             | 0                                            |                                                                              | 0                                          |                                                           | 100.0                      |                                                   | 100                             |
| 12.5<br>(1/2)                             | 346.9                                        | $\frac{346.9}{2422.3} \times 100 =$                                          | 14.3                                       | 100.0 - 14.3 =                                            | 85.7                       |                                                   | 86                              |
| 9.5<br>(3/8)                              | 207.8                                        | $\frac{207.8}{2422.3} \times 100 =$                                          | 8.6                                        | 85.7 - 8.6 =                                              | 77.1                       |                                                   | 77                              |
| 4.75<br>(No. 4)                           | 625.4                                        | $\frac{625.4}{2422.3} \times 100 =$                                          | 25.8                                       | 77.1 – 25.8 =                                             | 51.3                       |                                                   | 51                              |
| 2.36<br>(No. 8)                           | 416.2                                        | $\frac{416.2}{2422.3} \times 100 =$                                          | 17.2                                       | 51.3 - 17.2 =                                             | 34.1                       |                                                   | 34                              |
| 1.18<br>(No. 16)                          | 274.2                                        | $\frac{274.2}{2422.3} \times 100 =$                                          | 11.3                                       | 34.1 - 11.3 =                                             | 22.8                       |                                                   | 23                              |
| 0.600<br>(No. 30)                         | 152.1                                        | $\frac{152.1}{2422.3} \times 100 =$                                          | 6.3                                        | 22.8 - 6.3 =                                              | 16.5                       |                                                   | 17                              |
| 0.300<br>(No. 50)                         | 107.1                                        | $\frac{107.1}{2422.3} \times 100 =$                                          | 4.4                                        | 16.5 - 4.4 =                                              | 12.1                       |                                                   | 12                              |
| 0.150<br>(No. 100)                        | 96.4                                         | $\frac{96.4}{2422.3} \times 100 =$                                           | 4.0                                        | 12.1 - 4.0 =                                              | 8.1                        |                                                   | 8                               |
| 0.075<br>(No. 200)                        | 63.5                                         | $\frac{63.5}{2422.3} \times 100 =$                                           | 2.6                                        | 8.1 - 2.6 =                                               | 5.5                        | -0.6<br>(5.5 - 0.6 =)                             | 4.9                             |
| minus<br>75 μm<br>(No. 200)<br>in the pan | 5.7                                          |                                                                              |                                            |                                                           |                            |                                                   |                                 |
| Total mass                                | after sieving                                | g = sum of sieves                                                            | + mass in th                               | e pan = 2295.3 g                                          | 3                          |                                                   |                                 |
| Dry mass o                                | of total samp                                | le, before washin                                                            | g (M <sub>T30</sub> ): 242                 | 22.3g                                                     |                            |                                                   |                                 |

Individual **Gradation on All Sieves** 

\* Report total percent passing to 1 percent except report the 75 µm (No. 200) sieve to 0.1 percent.

52\_T30\_short\_21\_errata

# WAQTC

### FOP AASHTO T 30 (21)

| $\frac{346.9}{2422.3} \times 100 =$ $\frac{554.7}{2422.3} \times 100 =$ $\frac{1180.1}{2422.3} \times 100 =$ $\frac{1596.3}{2422.3} \times 100 =$ $\frac{1870.5}{2422.3} \times 100 =$ | 0.0<br>14.3<br>22.9<br>48.7<br>65.9  | 100.0 - 14.3 = $100.0 - 22.9 =$ $100.0 - 48.7 =$ $100.0 - 65.9 =$                   | 100.0<br>85.7<br>77.1<br>51.3<br>34.1                                                                                 |                                                                                                                             | 100<br>86<br>77<br>51<br>34                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{554.7}{2422.3} \times 100 =$ $\frac{1180.1}{2422.3} \times 100 =$ $\frac{1596.3}{2422.3} \times 100 =$                                                                          | 22.9<br>48.7<br>65.9                 | 100.0 - 22.9 =<br>100.0 - 48.7 =                                                    | 77.1                                                                                                                  |                                                                                                                             | 77                                                                                                                                                                           |
| $\frac{1180.1}{2422.3} \times 100 =$ $\frac{1596.3}{2422.3} \times 100 =$                                                                                                              | 48.7 65.9                            | 100.0 - 48.7 =                                                                      | 51.3                                                                                                                  |                                                                                                                             | 51                                                                                                                                                                           |
| $\frac{1596.3}{2422.3} \times 100 =$                                                                                                                                                   | 65.9                                 |                                                                                     |                                                                                                                       |                                                                                                                             |                                                                                                                                                                              |
|                                                                                                                                                                                        |                                      | 100.0 - 65.9 =                                                                      | 34.1                                                                                                                  |                                                                                                                             | 34                                                                                                                                                                           |
| $\frac{1870.5}{2422.2} \times 100 =$                                                                                                                                                   |                                      |                                                                                     |                                                                                                                       |                                                                                                                             | 1                                                                                                                                                                            |
| 2422.3                                                                                                                                                                                 | 77.2                                 | 100.0 - 77.2 =                                                                      | 22.8                                                                                                                  |                                                                                                                             | 23                                                                                                                                                                           |
| $\frac{2022.6}{2422.3} \times 100 =$                                                                                                                                                   | 83.5                                 | 100.0 - 83.5 =                                                                      | 16.5                                                                                                                  |                                                                                                                             | 17                                                                                                                                                                           |
| $\frac{2129.7}{2422.3} \times 100 =$                                                                                                                                                   | 87.9                                 | 100.0 - 87.9 =                                                                      | 12.1                                                                                                                  |                                                                                                                             | 12                                                                                                                                                                           |
| $\frac{2226.1}{2422.3} \times 100 =$                                                                                                                                                   | 91.9                                 | 100.0 - 91.9 =                                                                      | 8.1                                                                                                                   |                                                                                                                             | 8                                                                                                                                                                            |
| $\frac{2289.6}{2422.3} \times 100 =$                                                                                                                                                   | 94.5                                 | 100.0 - 94.5 =                                                                      | 5.5                                                                                                                   | -0.6<br>(5.5 - 0.6 =)                                                                                                       | 4.9                                                                                                                                                                          |
|                                                                                                                                                                                        |                                      |                                                                                     |                                                                                                                       |                                                                                                                             |                                                                                                                                                                              |
|                                                                                                                                                                                        | $\frac{2226.1}{2422.3} \times 100 =$ | $\frac{2226.1}{2422.3} \times 100 = 91.9$ $\frac{2289.6}{2422.3} \times 100 = 94.5$ | $\frac{2226.1}{2422.3} \times 100 = 91.9  100.0 - 91.9 = $ $\frac{2289.6}{2422.3} \times 100 = 94.5  100.0 - 94.5 = $ | $\frac{2226.1}{2422.3} \times 100 = 91.9  100.0 - 91.9 = 8.1$ $\frac{2289.6}{2422.3} \times 100 = 94.5  100.0 - 94.5 = 5.5$ | $\frac{2226.1}{2422.3} \times 100 = 91.9  100.0 - 91.9 = 8.1$ $\frac{2289.6}{2422.3} \times 100 = 94.5  100.0 - 94.5 = 5.5  \begin{array}{c} -0.6\\(5.5 - 0.6 =)\end{array}$ |

# Cumulative Gradation on All Sieves

\* Report total percent passing to 1 percent except report the 75 µm (No. 200) sieve to 0.1 percent.

52\_T30\_short\_21\_errata

Pub. October 2021

|

WAQTC

### FOP AASHTO T 30 (21)

# Report

- On forms approved by the agency
- Sample ID
- Depending on the agency, this may include:
  - Individual mass retained on each sieve
  - Individual percent retained on each sieve
  - Cumulative mass retained on each sieve
  - Cumulative percent retained on each sieve
  - Aggregate Correction Factor for each sieve from AASHTO T 308
  - Calculated percent passing each sieve to 0.1 percent
- Percent passing to the nearest 1 percent, except 75 μm (No. 200) sieve to the nearest 0.1 percent.

T 30

# ANNEX A TIME EVALUATION

(Mandatory Information)

The minimum time requirement should be evaluated for each shaker at least annually by the following method:

- 1. Shake the sample over nested sieves for approximately 10 minutes.
- 2. Provide a snug-fitting pan and cover for each sieve and hold in a slightly inclined position in one hand.
- 3. Hand-shake each sieve by striking the side of the sieve sharply and with an upward motion against the heel of the other hand at the rate of about 150 times per minute, turning the sieve about one sixth of a revolution at intervals of about 25 strokes.

If more than 0.5 percent by mass of the total sample before sieving passes any sieve after one minute of continuous hand sieving adjust shaker time and re-check.

In determining sieving time for sieve sizes larger than 4.75 mm (No. 4), limit the material on the sieve to a single layer of particles.

52\_T30\_short\_21\_errata

Asphalt 20-10

### ANNEX B OVERLOAD DETERMINATION

(Mandatory Information)

- For sieves with openings smaller than 4.75 mm (No. 4), the mass retained on any sieve shall not exceed 7 kg/m<sup>2</sup> (4 g/in<sup>2</sup>) of sieving surface.
- For sieves with openings 4.75 mm (No. 4) and larger, the mass (in kg) shall not exceed the product of 2.5 x (sieve opening in mm) x (effective sieving area). See Table B1.

Additional sieves may be necessary to keep from overloading the specified sieves. The sample may also be sieved in increments or sieves with a larger surface area.

### TABLE B1

# Maximum Allowable Mass of Material Retained on a Sieve, g Nominal Sieve Size, mm (in.) Exact size is smaller (see AASHTO T 27)

| Sieve Size |          | 203 mm | 254 mm                   | 305 mm                          |  |
|------------|----------|--------|--------------------------|---------------------------------|--|
| mn         | mm (in.) |        | (10 in.)                 | (12 in.)                        |  |
|            |          | dia.   | dia.                     | dia.                            |  |
|            |          | Sie    | ving Area m <sup>2</sup> | <sup>2</sup> (in <sup>2</sup> ) |  |
|            |          | 0.0285 | 0.0457                   | 0.0670                          |  |
|            |          | (44.2) | (70.8)                   | (103.5)                         |  |
| 50         | (2)      | 3600   | 5700                     | 8400                            |  |
| 37.5       | (1 1/2)  | 2700   | 4300                     | 6300                            |  |
| 25.0       | (1)      | 1800   | 2900                     | 4200                            |  |
| 19.0       | (3/4)    | 1400   | 2200                     | 3200                            |  |
| 16.0       | (5/8)    | 1100   | 1800                     | 2700                            |  |
| 12.5       | (1/2)    | 890    | 1400                     | 2100                            |  |
| 9.5        | (3/8)    | 670    | 1100                     | 1600                            |  |
| 6.3        | (1/4)    | 440    | 720                      | 1100                            |  |
| 4.75       | (No. 4)  | 330    | 540                      | 800                             |  |
| -4.75      | (-No. 4) | 200    | 320                      | 470                             |  |

Asphalt 20-11

WAQTC

52\_T30\_short\_21\_errata

Asphalt 20-12

# WAQTC

# FOP AASHTO T 30 (17)

# PERFORMANCE EXAM CHECKLIST

### MECHANICAL ANALYSIS OF EXTRACTED AGGREGATE FOP FOR AASHTO T 30

| Pa  | rticipant Name Exam                                                                                                           | Exam Date |               |         |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|---------|--|
| Re  | cord the symbols "P" for passing or "F" for failing on each step of the ch                                                    | ecklist.  |               |         |  |
| Pr  | ocedure Element                                                                                                               |           | Trial 1       | Trial 2 |  |
| 1.  | Total dry mass determined to 0.1 g                                                                                            |           |               |         |  |
| 2.  | Dry mass agrees with sample mass after ignition ( $M_{\rm f}$ ) from AASHTO T 308 within 0.10 percent?                        |           |               |         |  |
| 3.  | Sample placed in container and covered with water?                                                                            |           |               |         |  |
| 4.  | Wetting agent added?                                                                                                          |           |               |         |  |
| 5.  | Contents of container agitated vigorously?                                                                                    |           |               |         |  |
| 6.  | Wash water poured through proper nest of two sieves?                                                                          |           |               |         |  |
| 7.  | Washing continued until wash water is clear and no wetting agent re-                                                          | maining?  |               |         |  |
| 8.  | Retained material returned to washed sample?                                                                                  |           |               |         |  |
| 9.  | Washed material coarser than 75 $\mu$ m (No. 200) dried to constant mas at 110 ±5°C (230 ±9°F)?                               | SS        |               |         |  |
| 10. | . Sample cooled to room temperature?                                                                                          |           |               |         |  |
| 11. | . Dry mass after washing determined to 0.1 g?                                                                                 |           |               |         |  |
| 12. | . Material sieved on specified sieves?                                                                                        |           |               |         |  |
| 13. | . Mass of each fraction of aggregate, including minus 75 $\mu$ m (No. 200 determined and recorded to 0.1 g?                   | ),        |               |         |  |
| 14. | . Total mass of material after sieving agrees with mass before sieving to within 0.2 percent?                                 |           |               |         |  |
| 15. | . Percent passing each sieve determined correctly to the nearest 0.1 pe                                                       | rcent?    |               |         |  |
| 16. | . Aggregate correction factor applied, if applicable?                                                                         |           |               |         |  |
| 17. | . Percent passing on each sieve reported correctly to the nearest 1 perc and nearest 0.1 percent on the 75 $\mu$ m (No. 200)? | ent       |               |         |  |
| Co  | omments: First attempt: PassFailSecond att                                                                                    | empt: Pa  | ss <u> </u> I | Fail    |  |
| Ex  | aminer SignatureWAQT                                                                                                          | C #:      |               | _       |  |
| 38_ | _T30_pr_17 Asphalt 10-15                                                                                                      | Pub       | . October     | 2021    |  |

WAQTC

38\_T30\_pr\_17

Asphalt 10-16

# WSDOT Errata to FOP for AASHTO R 47 Reducing Samples of Asphalt Mixtures to Testing Size

WAQTC FOP for AASHTO R 47 has been adopted by WSDOT with the following changes:

# Apparatus

Include items below:

• Mechanical Splitter Type A (Quartermaster): having four equal-width chutes discharging into four appropriately sized sample receptacles. Splitter is to be equipped with a receiving hopper that will hold the sample until the release lever is activated with four sample receptacles of sufficient capacity to accommodate the reduced portion of the Asphalt Mixture sample from the mechanical splitter. Refer to AASHTO R 47, Figures 1 through 3, for configuration and required dimensions of the mechanical splitter.

# Selection of Procedure (Method)

Include items below:

- Mechanical Splitter Method
  - Type A (Quartermaster)
  - Type B (Riffle Splitter)

# Procedure

Include items below:

# Mechanical Splitter Type A (Quartermaster)

*Note:* This method is to be used for Initial Reduction of Field Sample <u>ONLY</u>.

- 1. Clean the splitter and apply a light coating of approved release agent to the surfaces that will contact Asphalt Mixture.
- 2. Close and secure hopper gates.
- 3. Place the four sample receptacles in the splitter so that there is no loss of material.
- 4. Remove the sample from the agency-approved container(s) and place in the mechanical splitter hopper. Avoid segregation, loss of Asphalt Mixture or the accidental addition of foreign material.
- 5. Release the handle, allowing the Asphalt Mixture to drop through the divider chutes and discharge into the four receptacles.
- 6. Any Asphalt Mixture that is retained on the surface of the splitter shall be removed and placed into the appropriate receptacle.
- 7. Close and secure the hopper gates.
- 8. Reduce the remaining Asphalt Mixture as needed by this method or a combination of the following methods as approved by the agency.

- 9. Combine the material contained in the receptacles from opposite corners and repeat the splitting process until an appropriate sample size is obtained.
- 10. Retain and properly identify the remaining unused portion of the HMA sample for further testing if required by the agency.

# **Quartering Method**

*Note:* If this method is being used for Initial Reduction of Field Sample, step 4 "turning the entire sample over a minimum of 4 times" for safety reasons is not required.

# Procedure

Include items below:

# Sample Identification

- 1. Each sample submitted for testing shall be accompanied by a transmittal letter completed in detail. Include the contract number, acceptance and mix design verification numbers, mix ID.
- 2. Samples shall be submitted in standard sample boxes, secured to prevent contamination and spillage.
- 3. Sample boxes shall have the following information inscribed with indelible-type marker: Contract number, acceptance and mix design verification numbers, mix ID.
- 4. The exact disposition of each quarter of the original field sample shall be determined by the agency.

# REDUCING SAMPLES OF ASPHALT MIXTURES TO TESTING SIZE FOP FOR AASHTO R 47

### Scope

This procedure covers sample reduction of asphalt mixtures to testing size in accordance with AASHTO R 47-19. The reduced portion is to be representative of the original sample.

### Apparatus

- Thermostatically controlled oven capable of maintaining a temperature of at least 110°C (230°F) or high enough to heat the material to a pliable condition for splitting.
- Non-contact temperature measuring device.
- Metal spatulas, trowels, metal straightedges, or drywall taping knives, or a combination thereof; for removing asphalt mixture samples from the quartering device, cleaning surfaces used for splitting, etc.
- Square-tipped, flat-bottom scoop, shovel or trowel for mixing asphalt mixture before quartering.
- Miscellaneous equipment including hot plate, non-asbestos heat-resistant gloves or mittens, pans, buckets, and cans.
- Sheeting: Non-stick heavy paper or other material as approved by the agency.
- Agency-approved release agent, free of solvent or petroleum-based material that could affect asphalt binder.
- Mechanical Splitter Type B (Riffle): having a minimum of eight equal-width chutes discharging alternately to each side with a minimum chute width of at least 50 percent larger than the largest particle size. A hopper or straight-edged pan with a width equal to or slightly smaller than the assembly of chutes in the riffle splitter to permit uniform discharge of the asphalt mixture through the chutes without segregation or loss of material. Sample receptacles of sufficient width and capacity to receive the reduced portions of asphalt mixture from the splitter without loss of material.
- Quartering Template: formed in the shape of a cross with equal length sides at right angles to each other. Template shall be manufactured of metal that will withstand heat and use without deforming. The sides of the quartering template should be sized so that the length exceeds the diameter of the flattened cone of asphalt mixture by an amount allowing complete separation of the quartered sample. Height of the sides must exceed the thickness of the flattened cone of asphalt mixture.
- Non-stick mixing surface that is hard, heat-resistant, clean, level, and large enough to permit asphalt mixture samples to be mixed without contamination or loss of material.

### Sampling

Obtain samples according to the FOP for AASHTO R 97.

46\_R47\_short\_19

Asphalt 14-1

WAQTC

# **Sample Preparation**

The sample must be warm enough to separate. If not, warm in an oven until it is sufficiently soft to mix and separate easily. Do not exceed either the temperature or time limits specified in the test method(s) to be performed.

# **Selection of Procedure (Method)**

Refer to agency requirements when determining the appropriate method(s) of sample reduction. In general, the selection of a particular method to reduce a sample depends on the initial size of the sample vs. the size of the sample needed for the specific test to be performed. It is recommended that, for large amounts of material, the initial reduction be performed using a mechanical splitter. This decreases the time needed for reduction and minimizes temperature loss. Further reduction of the remaining asphalt mixture may be performed by a combination of the following methods, as approved by the agency. The methods for reduction are:

- Mechanical Splitter Type B (Riffle) Method
- Quartering Method
  - Full Quartering
  - By Apex
- Incremental Method

# Procedure

When heating of the equipment is desired, it shall be heated to a temperature not to exceed the maximum mixing temperature of the job mix formula (JMF).

# Mechanical Splitter Type B (Riffle) Method

- 1. Clean the splitter and apply a light coating of approved release agent to the surfaces that will come in contact with asphalt mixture (hopper or straight-edged pan, chutes, receptacles).
- 2. Place two empty receptacles under the splitter.
- 3. Carefully empty the asphalt mixture from the agency-approved container(s) into the hopper or straight-edged pan without loss of material. Uniformly distribute from side to side of the hopper or pan.
- 4. Discharge the asphalt mixture at a uniform rate, allowing it to flow freely through the chutes.
- 5. Any asphalt mixture that is retained on the surface of the splitter shall be removed and placed into the appropriate receptacle.
- 6. Reduce the remaining asphalt mixture as needed by this method or a combination of the following methods as approved by the agency.

Asphalt 14-2

- 7. Using one of the two receptacles containing asphalt mixture, repeat the reduction process until the asphalt mixture contained in one of the two receptacles is the appropriate size for the required test.
- 8. After each split, remember to clean the splitter hopper and chute surfaces if needed.
- 9. Retain and properly identify the remaining unused asphalt mixture sample for further testing if required by the agency.

# **Quartering Method**

- 1. If needed, apply a light coating of release agent to quartering template.
- 2. Dump the sample from the agency approved container(s) into a conical pile on a hard, "non-stick," clean, level surface where there will be neither a loss of material nor the accidental addition of foreign material. The surface can be made non-stick by the application of an approved asphalt release agent, or sheeting.
- 3. Mix the material thoroughly by turning the entire sample over a minimum of four times with a flat-bottom scoop; or by alternately lifting each corner of the sheeting and pulling it over the sample diagonally toward the opposite corner, causing the material to be rolled. Create a conical pile by either depositing each scoop or shovelful of the last turning on top of the preceding one or lifting both opposite corners.
- 4. Flatten the conical pile to a uniform diameter and thickness where the diameter is four to eight times the thickness. Make a visual observation to ensure that the material is homogeneous.
- 5. Divide the flattened cone into four equal quarters using the quartering template or straightedges assuring complete separation.
- 6. Reduce to appropriate sample mass by full quartering or by apex.

### **Full Quartering**

- a. Remove diagonally opposite quarters, including all of the fine material, and place in a container to be retained.
- b. Remove the quartering template, if used.
- c. Combine the remaining quarters.
- d. If further reduction is necessary, repeat Quartering Method Steps 3 through 6.
- e. Repeat until appropriate sample mass is obtained. The final sample must consist of the two remaining diagonally opposite quarters.
- f. Retain and properly identify the remaining unused portion of the asphalt mixture sample for further testing if required by the agency.

#### WAQTC

### **Reducing by Apex**

- a. Using a straightedge, slice through a quarter of the asphalt mixture from the center point to the outer edge of the quarter.
- b. Pull or drag the material from the quarter with two straight edges or hold one edge of the straightedge in contact with quartering device.
- c. Remove an equal portion from the diagonally opposite quarter and combine these increments to create the appropriate sample mass.
- d. Continue using the apex method with the unused portion of the asphalt mixture until samples have been obtained for all required tests.
- e. Retain and properly identify the remaining unused portion of the asphalt mixture sample for further testing if required by the agency.

# **Incremental Method**

- 1. Cover a hard, clean, level surface with sheeting. This surface shall be large enough that there will be neither a loss of material nor the accidental addition of foreign material.
- 2. Place the sample from the agency approved container(s) into a conical pile on that surface.
- 3. Mix the material thoroughly by turning the entire sample over a minimum of four times:
  - a. Use a flat-bottom scoop; or
  - b. Alternately lift each corner of the sheeting and pull it over the sample diagonally toward the opposite corner, causing the material to be rolled.
- 4. Create a conical pile by either depositing each scoop or shovelful of the last turning on top of the preceding one or lifting both opposite corners.
- 5. Grasp the sheeting and roll the conical pile into a cylinder (loaf), then flatten the top. Make a visual observation to determine that the material is homogenous.
- 6. Remove one quarter of the length of the loaf and place in a container to be saved by either:
  - a. Pull sheeting over edge of counter and drop material into container.
  - b. Use a straightedge at least as wide as the full loaf to slice off material and place into container.
- 7. Obtain an appropriate sample mass for the test to be performed; by either:
  - a. Pull sheeting over edge of counter and drop cross sections of the material into container until proper sample mass has been obtained.
  - b. Use a straightedge at least as wide as the full loaf to slice off cross sections of the material until proper sample mass has been obtained and place into container.
- *Note 1:* When reducing the sample to test size it is advisable to take several small increments, determining the mass each time until the proper minimum size is achieved. Unless the sample size is grossly in excess of the minimum or exceeds the maximum test size, use the sample as reduced for the test.

46\_R47\_short\_19

Asphalt 14-4

- 8. Repeat Step 7 until all the samples for testing have been obtained or until final quarter of the original loaf is reached.
- 9. Retain and properly identify the remaining unused portion of the asphalt mixture sample for further testing if required by the agency.

46\_R47\_short\_19

Asphalt 14-5

WAQTC

FOP AASHTO R 47 (19)

46\_R47\_short\_19

Asphalt 14-6

# WAQTC

#### FOP AASHTO R 47 (19)

# PERFORMANCE EXAM CHECKLIST

# REDUCING SAMPLES OF ASPHALT MIXTURES TO TESTING SIZE FOP FOR AASHTO R 47

| Pa | rtic                                                                                 | zipant Name Exam                                                                                                                            | n Date     |         |  |  |  |  |
|----|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|--|--|--|--|
| Re | Record the symbols "P" for passing or "F" for failing on each step of the checklist. |                                                                                                                                             |            |         |  |  |  |  |
| Pr | oce                                                                                  | edure Element                                                                                                                               | Trial 1    | Trial 2 |  |  |  |  |
| 1. |                                                                                      | ample made soft enough to separate easily without exceedir mperature limits?                                                                | ng         |         |  |  |  |  |
| 2. |                                                                                      | plitting apparatus and tools, if preheated, not exceeding aximum mixing temperature from the JMF?                                           |            |         |  |  |  |  |
| M  | ech                                                                                  | nanical Splitter Type B (Riffle) Method                                                                                                     |            |         |  |  |  |  |
| 1. | Sj                                                                                   | plitter cleaned, and surfaces coated with release agent?                                                                                    |            |         |  |  |  |  |
| 2. | T                                                                                    | wo empty receptacles placed under splitter?                                                                                                 |            |         |  |  |  |  |
| 3. |                                                                                      | ample placed in hopper or straight edged pan without loss o<br>naterial and uniformly distributed from side to side?                        | .f         |         |  |  |  |  |
| 4. |                                                                                      | laterial discharged across chute assembly at controlled rate e flow of asphalt mixture through chutes?                                      | allowing   |         |  |  |  |  |
| 5. |                                                                                      | plitter surfaces cleaned of all retained asphalt mixture allow<br>Il into appropriate receptacles?                                          | ving it to |         |  |  |  |  |
| 6. | F١                                                                                   | urther reduction with the riffle splitter:                                                                                                  |            |         |  |  |  |  |
|    | a.                                                                                   | Material from one receptacle discharged across chute asse<br>at controlled rate, allowing free flow of asphalt mixture<br>through chutes?   | mbly       |         |  |  |  |  |
|    | b.                                                                                   | Splitting process continued until appropriate sample mass<br>with splitter surfaces cleaned of all retained asphalt mixture<br>every split? |            |         |  |  |  |  |
| 7. |                                                                                      | emaining unused asphalt mixture stored in suitable container, operly labeled?                                                               |            |         |  |  |  |  |

### **OVER**

# FOP AASHTO R 47 (19)

| Pro | oceo                                                                                                                            | Trial 1                                                                                                                                 | Trial 2 |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|--|--|
| Qu  | Quartering Method                                                                                                               |                                                                                                                                         |         |  |  |  |  |  |
| 1.  |                                                                                                                                 | mple placed in a conical pile on a hard, non-stick, heat-resistant itting surface such as metal or sheeting?                            |         |  |  |  |  |  |
| 2.  |                                                                                                                                 | mple mixed by turning the entire sample over a minimum of imes?                                                                         |         |  |  |  |  |  |
| 3.  | 3. Conical pile formed and then flattened uniformly to diameter equal to about 4 to 8 times thickness?                          |                                                                                                                                         |         |  |  |  |  |  |
| 4.  | 4. Sample divided into 4 equal portions either with a metal quartering template or straightedges such as drywall taping knives? |                                                                                                                                         |         |  |  |  |  |  |
| 5.  | 5. Reduction by Full Quartering:                                                                                                |                                                                                                                                         |         |  |  |  |  |  |
|     | a.                                                                                                                              | Two diagonally opposite quarters removed and placed in a container to be retained?                                                      |         |  |  |  |  |  |
|     | b.                                                                                                                              | Two other diagonally opposite quarters combined?                                                                                        |         |  |  |  |  |  |
|     | c.                                                                                                                              | Process continued, if necessary, until appropriate sample mass has been achieved?                                                       |         |  |  |  |  |  |
| 6.  | Re                                                                                                                              | duction by Apex:                                                                                                                        |         |  |  |  |  |  |
|     | a.                                                                                                                              | Using two straightedges or a quartering device and one straightedge, was one of the quarters split from apex to outer edge of material? |         |  |  |  |  |  |
|     | b.                                                                                                                              | Similar amount of material taken from the diagonally opposite quarter?                                                                  |         |  |  |  |  |  |
|     | c.                                                                                                                              | Increments combined to produce appropriate sample mass?                                                                                 |         |  |  |  |  |  |
| 7.  |                                                                                                                                 | maining unused asphalt mixture stored in suitable container, operly labeled?                                                            |         |  |  |  |  |  |

WAQTC

# **OVER**

Pub. October 2021

ASPHALT

# Page 10 of 12

| ASPHALT |                              | V                                                | WAQTC FOP   |               | OP AASHTO R         | 47 (19)   |         |
|---------|------------------------------|--------------------------------------------------|-------------|---------------|---------------------|-----------|---------|
| Pr      | ocedure Eler                 | nent                                             |             |               |                     | Trial 1   | Trial 2 |
| In      | cremental M                  | ethod                                            |             |               |                     |           |         |
| 1.      | Sample plac covered with     | ed on hard, non-<br>1 sheeting?                  | stick, hea  | t-resistant s | splitting surface   |           |         |
| 2.      | Sample mixe<br>4 times?      | ed by turning the                                | e entire sa | mple over a   | a minimum of        |           |         |
| 3.      | Conical pile                 | formed?                                          |             |               |                     |           |         |
| 4.      | Asphalt mix                  | ture rolled into l                               | oaf and tł  | nen flattene  | d?                  |           |         |
| 5.      |                              | arter of the loaf r<br>nter and set aside        |             | by slicing of | ff or dropping of   | ff        |         |
| 6.      | Proper samp sample conta     | le mass sliced o<br>ainer?                       | ff or drop  | ped off edg   | e of counter into   | )         |         |
| 7.      | Process cont<br>is remaining | tinued until all sa<br>?                         | amples ar   | e obtained o  | or final quarter    |           |         |
| 8.      | All remainir properly lab    | ng unused asphal<br>eled?                        | lt mixture  | stored in su  | uitable container   | ·,        |         |
| 0       | omments:                     | <b>F</b> ' , , , , , , , , , , , , , , , , , , , | D           | - 'I          | <b>6</b> 1 <i>4</i> |           |         |
|         | mments:                      | First attempt:                                   | Pass        | Fall          | Second atte         | mpt: Pass |         |
|         |                              |                                                  |             |               |                     |           |         |
|         |                              |                                                  |             |               |                     |           |         |
|         |                              |                                                  |             |               |                     |           |         |
|         |                              |                                                  |             |               |                     |           |         |
|         |                              |                                                  |             |               |                     |           |         |
|         |                              |                                                  |             |               |                     |           |         |

| Examiner Signature   WAQTC #: |
|-------------------------------|
|-------------------------------|

Asphalt 4-13

Pub. October 2021

Page 11 of 12

R 47

WAQTC

21\_R47\_pr\_19

Asphalt 4-14

# WSDOT Errata to FOP for AASHTO R 66

# Sampling Asphalt Materials

WAQTC FOP for AASHTO R 66 has been adopted by WSDOT with the following changes:

# Containers

Include sentence below:

Emulsified asphalt: Use wide-mouth plastic jars with screw caps. Protect the samples from freezing since water is a part of the emulsion. The sample container should be completely filled to minimize a skin formation on the sample. <u>Place tape around the seam of the cap to keep the cap from</u> loosening and spilling the contents.

### WAQTC

### SAMPLING ASPHALT MATERIALS FOP FOR AASHTO R 66

### Scope

This procedure covers obtaining samples of liquid asphalt materials in accordance with AASHTO R 66-16. Sampling of solid and semi-solid asphalt materials – included in AASHTO R 66 – is not covered here.

Agencies may be more specific on exactly who samples, where to sample, and what type of sampling device to use.

Warning: Always use appropriate safety equipment and precautions for hot liquids.

### Terminology

- Asphalt binder: Asphalt cement or modified asphalt cement that binds the aggregate particles into a dense mass.
- Asphalt emulsion: A mixture of asphalt binder and water.
- Cutback asphalt: Asphalt binder that has been modified by blending with a chemical solvent.

### Containers

Sample containers must be new, and the inside may not be washed or rinsed. The outside may be wiped with a clean, dry cloth.

All samples shall be put in 1 L (1 qt) containers and properly identified on the outside of the container with contract number, date sampled, data sheet number, brand and grade of material, and sample number. Include lot and sublot numbers when appropriate.

- Emulsified asphalt: Use wide-mouth plastic jars with screw caps. Protect the samples from freezing since water is a part of the emulsion. The sample container should be completely filled to minimize a skin formation on the sample.
- Asphalt binder and cutbacks: Use metal cans

*Note:* The sample container shall not be submerged in solvent, nor shall it be wiped with a solvent saturated cloth. If cleaning is necessary, use a clean dry cloth.

Asphalt 19-1

WAQTC

# Procedure

- 1. Coordinate sampling with contractor or supplier.
- 2. Allow a minimum of 4 L (1 gal) to flow before obtaining a sample(s).
- 3. Obtain samples of:
  - Asphalt binder from the line between the storage tank and the mixing plant while the plant is in operation, or from the delivery truck.
  - Cutback and emulsified asphalt from distributor spray bar or application device; or from the delivery truck before it is pumped into the distributor. Sample emulsified asphalt at delivery or before dilution.

# Report

- On standard agency forms
- Sample ID
- Date
- Time
- Location
- Quantity represented

51\_R66\_short\_16

Asphalt 19-2

### DEVELOPING A FAMILY OF CURVES FOP FOR AASHTO R 75

### Scope

This procedure provides a method to develop a family of curves in accordance with AASHTO R 75-16 using multiple moisture density relationships developed using the same method, A, B, C, or D, from the FOP for AASHTO T 99/T 180.

All curves used in a family must be developed using a single Method: A, B, C, or D of a procedure for AASHTO T 99 or T 180. See the FOP for AASHTO T 99/T 180.

### Terminology

*family of curves* — a group of soil moisture-density relationships (curves) determined using AASHTO T 99 or T 180, which reveal certain similarities and trends characteristic of the soil type and source.

*spine* — smooth line extending through the point of maximum density/optimum moisture content of a family of moisture-density curves.

### Procedure

- 1. Sort the curves by Method (A, B, C, or D of the FOP for T 99/T 180). At least three curves are required to develop a family.
- 2. Select the highest and lowest maximum dry densities from those selected to assist in determining the desired scale of the subsequent graph.
- 3. Plot the maximum density and optimum moisture points of the selected curves on the graph.
- 4. Draw a smooth, "best fit," curved line through the points creating the spine of the family of curves.
- 5. Remove maximum density and optimum moisture points that were not used to establish the spine.
- 6. Add the moisture/density curves associated with the points that were used to establish the spine. It is not necessary to include the portion of the curves over optimum moisture.
- *Note 1*—Intermediate template curves using slopes similar to those of the original moisture-density curves may be included when maximum density points are more than 2.0 lb/ft<sup>3</sup> apart. Template curves are indicated by a dashed line.
- 7. Plot the 80 percent of optimum moisture range when desired:
  - a. Using the optimum moisture of an existing curve, calculate 80 percent of optimum moisture and plot this value on the curve. Repeat for each curve in the family.
  - b. Draw a smooth, "best fit," curved line connecting the 80 percent of optimum moisture points plotted on the curves that parallel the spine.

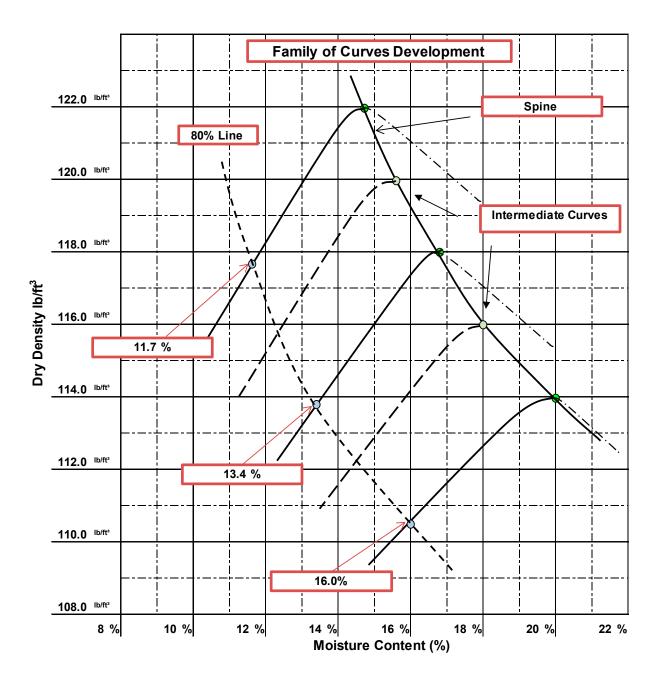
46\_R75\_short\_16

E&B/ID 14-1

# EMBANKMENT AND BASE

**IN-PLACE DENSITY** 

# Calculations


Calculate 80 percent of optimum moisture of each curve:

Example:

Optimum moisture of the highest density curve = 14.6%

$$80\% \ point = \frac{80}{100} \times 14.6\% = 11.7\%$$

WAQTC



46\_R75\_short\_16

E&B/ID 14-2

Pub. October 2021

Page 2 of 4

### PERFORMANCE EXAM CHECKLIST

### DEVELOPING A FAMILY OF CURVES FOP FOR AASHTO R 75

| Pa | ticipant Name Exam Date                                                           |
|----|-----------------------------------------------------------------------------------|
| Re | ord the symbols "P" for passing or "F" for failing on each step of the checklist. |
| Pr | cedure Element Trial 1 Trial 2                                                    |
| 1. | Curves sorted by method and procedure (A, B, C, or D of the FOP for T 99/T 180)?  |
|    | a. At least three curves per family?                                              |
|    | b. Curves within family are similar soil type and from same source?               |
| 2. | Maximum density and optimum moisture points plotted on the graph?                 |
| 3. | Spine drawn correctly?                                                            |
| 4. | Maximum density and optimum moisture points removed that were                     |
| 5. | Moisture/density curves added?                                                    |
| 6. | Optimum moisture range?                                                           |
|    | a. 80 percent of optimum moisture calculated for each curve?                      |
|    | b. Curved line through 80 percent of optimum moisture drawn correctly?            |
|    | mments: First attempt: PassFail Second attempt: PassFail                          |
| Ex | uminer SignatureWAQTC #:                                                          |

E&B/ID 5-11

25\_R75\_pr\_18

### EMBANKMENT AND BASE

WAQTC

# FOP AASHTO R 75 (18)

 $25\_R75\_pr\_18$ 

E&B/ID 5-12

# WSDOT Errata to FOP for AASHTO R 76

# Reducing Samples of Aggregate to Testing Size

WAQTC FOP for AASHTO R 76 has been adopted by WSDOT with the following changes:

Procedure

- Method A Mechanical Splitter
- Mechanical Splitter Check Step not required by WSDOT

# REDUCING SAMPLES OF AGGREGATE TO TESTING SIZE FOP FOR AASHTO R 76

### Scope

This procedure covers the reduction of samples to the appropriate size for testing in accordance with AASHTO R 76-16. Techniques are used that minimize variations in characteristics between test samples and field samples. Method A (Mechanical Splitter) and Method B (Quartering) are covered.

This FOP applies to fine aggregate (FA), coarse aggregate (CA), and mixes of the two (FA / CA) and may also be used on soils.

### Apparatus

### Method A – Mechanical Splitter

Splitter chutes:

- Even number of equal width chutes
- Discharge alternately to each side
- Minimum of 8 chutes total for CA and FA / CA, 12 chutes total for FA
- Width:
  - Minimum 50 percent larger than largest particle
  - Maximum chute width of 19 mm (3/4 in.) for fine aggregate passing the 9.5 mm (3/8 in.) sieve

Feed control:

- Hopper or straightedge pan with a width equal to or slightly less than the overall width of the assembly of chutes
- Capable of feeding the splitter at a controlled rate

Splitter receptacles / pans:

• Capable of holding two halves of the sample following splitting

The splitter and accessory equipment shall be so designed that the sample will flow smoothly without restriction or loss of material.

38\_R76\_short\_20

Aggregate 10-1

Pub. October 2021

R 76

#### AGGREGATE

WAQTC

### Method B – Quartering

- Straightedge scoop, shovel, or trowel
- Broom or brush
- Canvas or plastic sheet, appropriate for the amount and size of the material being reduced

# **Method Selection**

Samples of CA may be reduced by either Method A or Method B.

Samples of FA which are drier than the saturated surface dry (SSD) condition, as described in AASHTO T 84, shall be reduced by a mechanical splitter according to Method A. As a quick approximation, if the fine aggregate will retain its shape when molded with the hand, it is wetter than SSD.

Samples of FA / CA which are drier than SSD may be reduced by Method A or Method B.

Samples of FA and FA / CA that are at SSD or wetter than SSD shall be reduced by Method B, or the entire sample may be dried – using temperatures that do not exceed those specified for any of the tests contemplated – and then reduced to test sample size using Method A.

|                       | Drier than SSD           | Wetter than SSD          |
|-----------------------|--------------------------|--------------------------|
| Fine Aggregate (FA)   | Method A<br>(Mechanical) | Method B<br>(Quartering) |
| Mixture of FA/CA      | Either Method            | Method B<br>(Quartering) |
| Coarse Aggregate (CA) | Either Method            | Either Method            |

### Table 1

### Procedure

### Method A – Mechanical Splitter

- 1. Place two clean empty receptacles under the splitter.
- 2. Empty the sample into the hopper or pan without loss of material.
- 3. Uniformly distribute the material in the hopper or pan from edge to edge so that approximately equal amounts flow through each chute.
- 4. Discharge the material at a uniform rate, allowing it to flow freely through the chutes.
- 5. Remove any material retained on the surface of the splitter and place into the appropriate receptacle.
- 6. Using one of the two receptacles containing material, repeat Steps 1 through 6 until the material in one of the two receptacles is the appropriate sample size for the required test.
- 7. Retain and properly identify the remaining unused sample for further testing if required.

### **Mechanical Splitter Check**

• Determine the mass of each reduced portion. If the percent difference of the two masses is greater than 5 percent, corrective action must be taken.

# Calculation

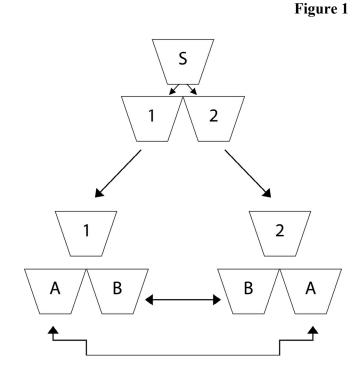
$$\frac{Smaller Mass}{Larger Mass} = Ratio \quad (1 - ratio) \times 100 = \% Difference$$

Splitter check: 5127 g total sample mass

Splitter pan #1: 2583 g

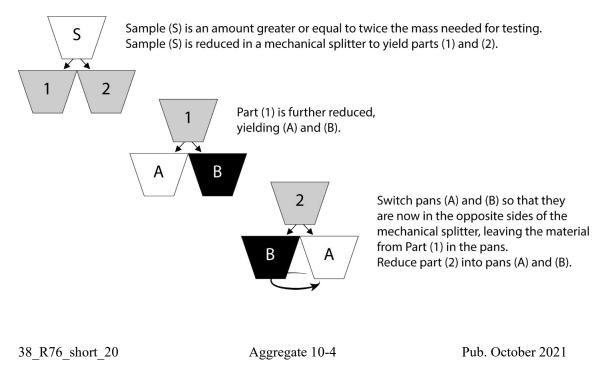
Splitter pan #2: 2544 g

$$\frac{2544 \text{ g}}{2583 \text{ g}} = 0.985 \qquad (1 - 0.985) \times 100 = 1.5\%$$


38\_R76\_short\_20

Aggregate 10-3

#### AGGREGATE


### Alternative to Mechanical Splitter Check

• In lieu of determining the mass of each reduced portion, use the method illustrated in Figure 1 or 2 during reduction.



- Sample (S) is an amount greater than or equal to twice the mass needed for testing. Sample (S) is reduced in a mechanical splitter to yield parts (1) and (2).
- Part (1) is further reduced yielding (A) and (B) while part (2) is reduced to yield (B) and (A).
- Final testing sample is produced by combining alternate pans, i.e. A/A or B/B only.





# Method B – Quartering

Use either of the following two procedures or a combination of both.

### Procedure 1: Quartering on a clean, hard, level surface:

- 1. Place the sample on a hard, clean, level surface where there will be neither loss of material nor the accidental addition of foreign material.
- 2. Mix the material thoroughly by turning the entire sample over a minimum of four times. With the last turning, shovel the entire sample into a conical pile by depositing each shovelful on top of the preceding one.
- 3. Flatten the conical pile to a uniform thickness and diameter by pressing down with a shovel. The diameter should be four to eight times the thickness.
- 4. Divide the flattened pile into four approximately equal quarters with a shovel or trowel.
- 5. Remove two diagonally opposite quarters, including all fine material, and brush the cleared spaces clean.
- 6. Successively mix and quarter the remaining material until the sample is reduced to the desired size.
- 7. The final test sample consists of two diagonally opposite quarters.

### Procedure 2: Quartering on a canvas or plastic sheet:

- 1. Place the sample on the sheet.
- 2. Mix the material thoroughly a minimum of four times by pulling each corner of the sheet horizontally over the sample toward the opposite corner. After the last turn, form a conical pile.
- 3. Flatten the conical pile to a uniform thickness and diameter by pressing down with a shovel. The diameter should be four to eight times the thickness.
- 4. Divide the flattened pile into four approximately equal quarters with a shovel or trowel, or insert a stick or pipe beneath the sheet and under the center of the pile, then lift both ends of the stick, dividing the sample into two roughly equal parts. Remove the stick leaving a fold of the sheet between the divided portions. Insert the stick under the center of the pile at right angles to the first division and again lift both ends of the stick, dividing the sample into four roughly equal quarters.
- 5. Remove two diagonally opposite quarters, being careful to clean the fines from the sheet.

38\_R76\_short\_20

Aggregate 10-5

### AGGREGATE

WAQTC

- 6. Successively mix and quarter the remaining material until the sample size is reduced to the desired size.
- 7. The final test sample consists of two diagonally opposite quarters.

38\_R76\_short\_20

Aggregate 10-6

#### WAQTC

## PERFORMANCE EXAM CHECKLIST

# REDUCING SAMPLES OF AGGREGATE TO TESTING SIZE FOP FOR AASHTO R 76

| Pa | articipant Name Exam Date                                                                                                  |
|----|----------------------------------------------------------------------------------------------------------------------------|
| Re | ecord the symbols "P" for passing or "F" for failing on each step of the checklist.                                        |
|    | Trial 1 Trial                                                                                                              |
| M  | ethod A - Splitting                                                                                                        |
| 1. | Chutes appropriate size and number?                                                                                        |
| 2. | Material spread uniformly on feeder?                                                                                       |
| 3. | Rate of feed slow enough so that sample flows freely through chutes?                                                       |
| 4. | Material in one pan re-split until desired mass is obtained?                                                               |
| 5. | Mechanical splitter checked or alternative used?                                                                           |
| M  | lethod B - Quartering                                                                                                      |
| 1. | Sample placed on clean, hard, and level surface?                                                                           |
| 2. | Mixed by turning over 4 times with shovel or by pulling sheet                                                              |
| 3. | Conical pile formed without loss of material?                                                                              |
| 4. | Pile flattened to uniform thickness and diameter?                                                                          |
| 5. | Diameter equal to about 4 to 8 times thickness?                                                                            |
| 6. | Divided into 4 equal portions with shovel or trowel without loss<br>of material?                                           |
| 7. | Two diagonally opposite quarters, including all fine material, removed?                                                    |
| 8. | Process continued until desired sample size is obtained when<br>two opposite quarters combined?                            |
|    | The sample may be placed upon a sheet and a stick or pipe may be placed under the she<br>to divide the pile into quarters. |
| Сс | omments: First attempt: PassFailSecond attempt: PassFail                                                                   |
|    |                                                                                                                            |
|    |                                                                                                                            |
|    | Examiner Signature WAQTC #:                                                                                                |
| 21 | R76 pr 20 Aggregate 4-11 Pub. October 2021                                                                                 |

AGGREGATE

WAQTC

21\_R76\_pr\_20

Aggregate 4-12

## VACUUM DRYING COMPACTED ASPHALT SPECIMENS FOP FOR AASHTO R 79

#### Scope

This practice covers the process of drying compacted field and laboratory specimens using a vacuum device in accordance with AASHTO R 79-19.

#### Overview

The specimens dried by this procedure remain near room temperature, which helps in maintaining specimen integrity during the drying process and allows the operators to run repeated tests on the same sample, if necessary.

Specimens are kept and stored at temperatures above 15°C (60°F) and below 54°C (130°F).

This practice can also be used for drying other construction materials such as concrete, soils, aggregates, and loose asphalt mixtures. Use manufacturer's recommendations for drying other construction materials.

#### Apparatus

- Vacuum device:
  - Attached to a pump capable of evacuating a sealed chamber to a pressure of 1 kPa (6 mm Hg) when at sea level.
  - Capable of controlling the vacuum, airflow, and temperature in order to properly dry the specimen at close to room temperature.
  - With a display that indicates a pressure value, the dry point in the chamber, and number of cycles.
  - With a plate for removing water from the bottom surface of the specimen chamber.
  - With means to trap moisture that is removed from the sample.
- Chamber (attached to the vacuum device): Large enough to hold cylindrical specimens, 150 mm (6 in.) diameter by 180 mm (7 in.) height, or cubical samples, 150 mm (6 in.) length by 150 mm (6 in.) width by 180 mm (7 in.) height.
- Thermometric device or infrared thermometer: accurate to  $\pm 5^{\circ}C$  ( $\pm 9^{\circ}F$ ).
- Balance or scale: Capacity sufficient for the sample mass and conforming to the requirements of M 231, Class G2.

#### Daily Equipment Preparation

- 1. Dry the moisture trap (if necessary) and the specimen (vacuum) chamber.
- 2. Run the device without any specimens. The device should display a pressure value that indicates a known dry point.

FOP Library - 1

*Note 1:* If the unit fails to achieve a dry point pressure value, as recommended by the manufacturer, check that the lid and all hose connections are well sealed. If needed, refer to the manufacturer's troubleshooting instructions.

FOP LIBRARY

WAQTC

## **Test Specimens**

Test specimens may be either laboratory-molded or sampled from asphalt mixture pavement.

## Procedure

Note 2: Keeping the device in the off position when not in use can prolong the operating life of its components.

- 1. Measure the sample temperature with a handheld infrared thermometer. Make sure the specimen surface temperature is above 15°C (60°F).
- 2. Remove any standing water from the surface of the specimen by using a paper towel or an absorptive cloth.
- 3. Place the specimen inside the vacuum chamber, closing the lid to the vacuum chamber and moisture trap (if applicable).
- 4. Initiate the vacuum drying cycle. The pressure is monitored throughout the drying cycle to ensure dry specimen condition pressure is achieved in the device.
- 5. The device will automatically stop when the specimen is dry.

*Note 3:* The device is calibrated at the factory or by the operator according to manufacturer's recommended procedures to sense a dry specimen condition.

- 6. Remove the specimen from the chamber.
- 7. Determine and record the specimen mass to the nearest 0.1 g.
- 8. Repeat steps 5 through 7 until specimen weight after vacuum drying cycle is less than 0.3 g from previous drying cycle.
- *Note 4:* Between drying cycles, wipe off any free-standing water in the moisture trap to speed up the specimen drying cycles.
- *Note 5:* Excessive temperature may damage the specimen. Between drying cycles, verify that the specimen temperature has not exceeded 54°C (130°F).

# Performance Exam Checklist

Vacuum Drying Compacted Asphalt Specimens

## FOP FOR AASHTO R 79

| Part  | icipant Name                                                                                                         | Exam Date                  | _       |
|-------|----------------------------------------------------------------------------------------------------------------------|----------------------------|---------|
| Reco  | rd the symbols "P" for passing or "F" for failing on each step o                                                     | of the checklist.          |         |
| Proc  | edure Element                                                                                                        | Trial 1                    | Trial 2 |
| 1.    | The tester has a copy of the current procedure on hand?                                                              |                            |         |
| 2.    | All equipment is functioning according to the test procedure current calibration/standardization/check tags present? | , and if required, has the |         |
| 3.    | Device specimen chamber and moisture trap dry?                                                                       |                            |         |
| 4.    | Device ran without any specimens and indicates a known dry                                                           | y point?                   |         |
| 5.    | Specimen surface temperature above 60°F (15°C)?                                                                      |                            |         |
| 6.    | Specimen surfaced dried and placed inside vacuum chamber                                                             | ?                          |         |
| 7.    | Vacuum drying cycle initiated after closing chamber and moi                                                          | sture trap lids?           |         |
| 8.    | Specimen removed from chamber and mass determined afte                                                               | r drying cycle complete?   |         |
| 9.    | Steps repeated until specimen mass is less than 0.3 g from p                                                         | revious drying cycle mass? |         |
| 10.   | Free-standing water in moisture trap wiped off between cycl                                                          | es?                        |         |
| First | Attempt: Pass Fail Second Attemp                                                                                     | t: Pass Fail               |         |
| Signa | ature of Examiner                                                                                                    | WAQTC #                    |         |
|       |                                                                                                                      |                            |         |

First Attempt: Pass Fail

## SPECIFIC GRAVITY AND ABSORPTION OF COARSE AGGREGATE FOP FOR AASHTO T 85

### Scope

This procedure covers the determination of specific gravity and absorption of coarse aggregate in accordance with AASHTO T 85-21. Specific gravity may be expressed as bulk specific gravity ( $G_{sb}$ ), bulk specific gravity, saturated surface dry ( $G_{sb}$  SSD), or apparent specific gravity ( $G_{sa}$ ).  $G_{sb}$  and absorption are based on aggregate after soaking in water. This procedure is not intended to be used with lightweight aggregates.

## Terminology

Absorption – the increase in the mass of aggregate due to water being absorbed into the pores of the material, but not including water adhering to the outside surface of the particles, expressed as a percentage of the dry mass. The aggregate is considered "dry" when it has been maintained at a temperature of  $110 \pm 5^{\circ}$ C ( $230 \pm 9^{\circ}$ F) for sufficient time to remove all uncombined water.

Saturated Surface Dry (SSD) – condition of an aggregate particle when the permeable voids are filled with water, but no water is present on exposed surfaces.

Specific Gravity – the ratio of the mass, in air, of a volume of a material to the mass of the same volume of gas-free distilled water at a stated temperature.

Apparent Specific Gravity  $(G_{sa})$ - the ratio of the mass, in air, of a volume of the impermeable portion of aggregate to the mass of an equal volume of gas-free distilled water at a stated temperature.

Bulk Specific Gravity  $(G_{sb})$ - the ratio of the mass, in air, of a volume of aggregate (including the permeable and impermeable voids in the particles, but not including the voids between particles) to the mass of an equal volume of gas-free distilled water at a stated temperature.

Bulk Specific Gravity (SSD) ( $G_{sb}$  SSD) – the ratio of the mass, in air, of a volume of aggregate, including the mass of water within the voids filled to the extent achieved by submerging in water for 15 to 19 hours (but not including the voids between particles), to the mass of an equal volume of gas-free distilled water at a stated temperature.

## Apparatus

- Balance or scale: with a capacity of 5 kg, sensitive to 0.1 g. Meeting the requirements of AASHTO M 231.
- Sample container: a wire basket of 3.35 mm (No. 6) or smaller mesh, with a capacity of 4 to 7 L (1 to 2 gal) to contain aggregate with a nominal maximum size of 37.5 mm (1 1/2 in.) or smaller; or a larger basket for larger aggregates, or both.
- Water tank: watertight and large enough to completely immerse aggregate and basket, equipped with an overflow valve to keep water level constant.

E&B/ID 16-1

EMBANKMENT AND BASE IN-PLACE DENSITY

- Suspension apparatus: wire used to suspend apparatus shall be of the smallest practical diameter.
- Sieves: 4.75 mm (No. 4) or other sizes as needed, meeting the requirements of FOP for AASHTO T 27/T 11.
- Large absorbent towel

## **Sample Preparation**

- 1. Obtain the sample in accordance with the FOP for AASHTO R 90 (see Note 1).
- 2. Mix the sample thoroughly and reduce it to the approximate sample size required by Table 1 in accordance with the FOP for AASHTO R 76.
- 3. Reject all material passing the appropriate sieve by dry sieving.
- 4. Thoroughly wash sample to remove dust or other coatings from the surface.
- 5. Dry the test sample to constant mass according to the FOP for AASHTO T 255/T 265 at a temperature of  $110 \pm 5^{\circ}$ C (230  $\pm 9^{\circ}$ F) and cool in air at room temperature for 1 to 3 hours.
- *Note 1:* Where the absorption and specific gravity values are to be used in proportioning concrete mixtures in which the aggregates will be in their naturally moist condition, the requirement for initial drying to constant mass may be eliminated, and, if the surfaces of the particles in the sample have been kept continuously wet until test, the 15-to-19 hour soaking may also be eliminated.
- 6. Re-screen the sample over the appropriate sieve. Reject all material passing that sieve.
- 7. The sample shall meet or exceed the minimum mass given in Table 1.
- *Note 2:* If this procedure is used only to determine the G<sub>sb</sub> of oversized material for the FOP for AASHTO T 99 / T 180, the material can be rejected over the appropriate sieve. For T 99 / T 180 Methods A and B, use the 4.75 mm (No. 4) sieve; T 99 / T 180 Methods C and D use the 19 mm (3/4 in).

|                      | Table 1             |
|----------------------|---------------------|
| Nominal Maximu       | m Minimum Mass of   |
| Size*                | Test Sample, g (lb) |
| mm (in.)             |                     |
| 12.5 $(1/2)$ or less | s 2000 (4.4)        |
| 19.0 (3/4)           | 3000 (6.6)          |
| 25.0 (1)             | 4000 (8.8)          |
| 37.5 (1 1/2)         | 5000 (11)           |
| 50 (2)               | 8000 (18)           |
| 63 (2 1/2)           | 12,000 (26)         |
| 75 (3)               | 18,000 (40)         |

\* One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

48 T85 short 21 errata

E&B/ID 16-2

#### Procedure

- 1. Immerse the aggregate in water at room temperature for a period of 15 to 19 hours.
- *Note 3:* When testing coarse aggregate of large nominal maximum size requiring large test samples, it may be more convenient to perform the test on two or more subsamples, and then combine the values obtained.
- 2. Place the empty basket into the water bath and attach to the balance. Inspect the immersion tank to ensure the water level is at the overflow outlet height and basket is fully submerged. Tare the balance with the empty basket attached in the water bath.
- 3. Remove the test sample from the water and roll it in a large absorbent cloth until all visible films of water are removed. Wipe the larger particles individually. If the test sample dries past the SSD condition, immerse in water for 30 min, and then resume the process of surface-drying.
- *Note 4:* A moving stream of air may be used to assist in the drying operation but take care to avoid evaporation of water from aggregate pores.
- 4. Determine the SSD mass of the sample, and record this and all subsequent masses to the nearest 0.1 g or 0.1 percent of the sample mass, whichever is greater. Designate this mass as "B."
- 5. Immediately place the SSD test sample in the sample container and weigh it in water maintained at  $23.0 \pm 1.7$ °C ( $73.4 \pm 3$ °F). Shake the container to release entrapped air before recording the weight. Re-inspect the immersion tank to ensure the water level is at the overflow outlet height and basket is fully submerged. Designate this submerged weight as "C."
- *Note 5:* The container should be immersed to a depth sufficient to cover it and the test sample during mass determination. Wire suspending the container should be of the smallest practical size to minimize any possible effects of a variable immersed length.
- 6. Remove the sample from the basket. Ensure all material has been removed. Place in a container of known mass.
- 7. Dry the test sample to constant mass according to the FOP for AASHTO T 255 / T 265 at  $110 \pm 5^{\circ}$ C (230  $\pm 9^{\circ}$ F) and cool in air at room temperature for 1 to 3 hours.
- 8. Determine and record the dry mass. Designate this mass as "A."

E&B/ID 16-3

# EMBANKMENT AND BASE IN-PLACE DENSITY

### Calculations

Perform calculations and determine values using the appropriate formula below.

Bulk specific gravity (G<sub>sb</sub>)

$$G_{sb} = \frac{A}{B-C}$$

Bulk specific gravity, SSD (Gsb SSD)

$$G_{sb}SSD = \frac{B}{B-C}$$

Apparent specific gravity (Gsa)

$$G_{sa} = \frac{A}{A - C}$$

Absorption

Absorption 
$$=$$
  $\frac{B-A}{A} \times 100$ 

Where:

48\_T85\_short\_21\_errata

Pub. October 2021

WSDOT Materials Manual M 46-01.40 January 2022

WAQTC

#### EMBANKMENT AND BASE IN-PLACE DENSITY

WAQTC

#### Sample Calculations

| Sample | Α      | В      | С      | <b>B - C</b> | A - C | <b>B - A</b> |
|--------|--------|--------|--------|--------------|-------|--------------|
| 1      | 2030.9 | 2044.9 | 1304.3 | 740.6        | 726.6 | 14.0         |
| 2      | 1820.0 | 1832.5 | 1168.1 | 664.4        | 651.9 | 12.5         |
| 3      | 2035.2 | 2049.4 | 1303.9 | 745.5        | 731.3 | 14.2         |

| Sample | G <sub>sb</sub> | G <sub>sb</sub> SSD | Gsa   | Absorption |
|--------|-----------------|---------------------|-------|------------|
| 1      | 2.742           | 2.761               | 2.795 | 0.7        |
| 2      | 2.739           | 2.758               | 2.792 | 0.7        |
| 3      | 2.730           | 2.749               | 2.783 | 0.7        |

These calculations demonstrate the relationship between  $G_{sb}$ ,  $G_{sb}$  SSD, and  $G_{sa}$ .  $G_{sb}$  is always lowest since the volume includes voids permeable to water.  $G_{sb}$  SSD is always intermediate.  $G_{sa}$  is always highest since the volume does not include voids permeable to water. When running this test, check to make sure the values calculated make sense in relation to one another.

## Report

- On forms approved by the agency
- Sample ID
- Specific gravity values to the nearest 0.001
- Absorption to the nearest 0.1 percent

E&B/ID 16-5

T 85

# EMBANKMENT AND BASE IN-PLACE DENSITY

WAQTC

48\_T85\_short\_21\_errata

E&B/ID 16-6

## PERFORMANCE EXAM CHECKLIST

# SPECIFIC GRAVITY AND ABSORPTION OF COARSE AGGREGATE FOP FOR AASHTO T 85

| Par                                                                                  | ticipant Name                                                                                             | Exam Date |         |         |  |  |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------|---------|---------|--|--|
| Record the symbols "P" for passing or "F" for failing on each step of the checklist. |                                                                                                           |           |         |         |  |  |
| Pro                                                                                  | ocedure Element                                                                                           |           | Trial 1 | Trial 2 |  |  |
| 1.                                                                                   | Sample obtained by FOP for AASHTO R 90 and reduced by AASHTO R 76 or from FOP for AASHTO T 99 / T 180?    | FOP for   |         |         |  |  |
| 2.                                                                                   | Screened on the appropriate size sieve?                                                                   |           |         |         |  |  |
| 3.                                                                                   | Sample mass appropriate?                                                                                  |           |         |         |  |  |
| 4.                                                                                   | Particle surfaces clean?                                                                                  |           |         |         |  |  |
| 5.                                                                                   | Dried to constant mass $110 \pm 5^{\circ}$ C (230 $\pm 9^{\circ}$ F) and cooled to ro temperature?        | om        |         |         |  |  |
| 6.                                                                                   | Re-screen over appropriate sieve?                                                                         |           |         |         |  |  |
| 7.                                                                                   | Covered with water for 15 to 19 hours?                                                                    |           |         |         |  |  |
| 8.                                                                                   | Wire basket completely submerged in immersion tank and att<br>to balance?                                 | ached     |         |         |  |  |
| 9.                                                                                   | Immersion tank inspected for proper water height?                                                         |           |         |         |  |  |
| 10.                                                                                  | Balance tared with basket in tank and temperature checked $23.0 \pm 1.7^{\circ}C (73.4 \pm 3^{\circ}F)$ ? |           |         |         |  |  |
| 11.                                                                                  | Sample removed from water and rolled in cloth to remove visible films of water?                           |           |         |         |  |  |
| 12.                                                                                  | Larger particles wiped individually?                                                                      |           |         |         |  |  |
| 13.                                                                                  | Evaporation avoided?                                                                                      |           |         |         |  |  |
| 14.                                                                                  | Sample mass determined to 0.1 g?                                                                          |           |         |         |  |  |
| 15.                                                                                  | Sample immediately placed in basket, in immersion tank?                                                   |           |         |         |  |  |
| 16.                                                                                  | Entrapped air removed before weighing by shaking basket while immersed?                                   |           |         |         |  |  |
| 17.                                                                                  | Immersion tank inspected for proper water height?                                                         |           |         |         |  |  |
| 18.                                                                                  | Immersed sample weight determined to 0.1 g?                                                               |           |         |         |  |  |
| 19.                                                                                  | All the sample removed from basket?                                                                       |           |         |         |  |  |
| 20.                                                                                  | Sample dried to constant mass and cooled to room temperatur                                               | re?       |         |         |  |  |

## OVER

32\_T85\_pr\_18

E&B/ID 7-11

| EMBANKMENT        | AND BASE               | WAQTC  | FOP AASHTO T 85 (18)     |
|-------------------|------------------------|--------|--------------------------|
| Procedure Elen    | nent                   |        | Trial 1 Trial 2          |
| 21. Sample mass   | determined to 0.1 g?   |        |                          |
| 22. Proper formul | as used in calculatior | ns?    |                          |
| Comments:         | First attempt: Pa      | ssFail | Second attempt: PassFail |
|                   |                        |        |                          |
|                   |                        |        |                          |
| Examiner Signat   | ture                   |        | WAQTC #:                 |

E&B/ID 7-12

Pub. October 2021

T 85

## WSDOT FOP for AASHTO T 89

## Determining the Liquid Limit of Soils

WSDOT has adopted the published AASHTO T 89-13 (2021).

AASHTO Test Methods cannot be included in *Materials Manual* due to copyright infringement.

WSDOT employees can access AASHTO and ASTM test methods in the following web address: http://wwwi.wsdot.wa.gov/MatsLab/BusinessOperations/ASTMLogin.htm

Non-WSDOT employees can order AASHTO's Standard Specifications for Transportation Materials and Methods of Sampling and Testing, using the following web address: https://store.transportation.org

## **Performance Exam Checklist**

## Determining the Liquid Limit of Soils AASHTO T 89 (Method B Only)

| Parti | cipant Name Exam Date                                                                                                                 |     | _  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| Prep  | aration                                                                                                                               | Yes | No |
| 1.    | The tester has a copy of the current procedure on hand?                                                                               |     |    |
| 2.    | All equipment is functioning according to the test procedure, and if required, has the current calibration/verification tags present? |     |    |
| 3.    | Sample obtained using AASHTO R 58?                                                                                                    |     |    |
| 4.    | Minimum sample mass meets requirement of AASHTO T 89 Method B?                                                                        |     |    |
| 5.    | Sample mixed with 8 to 10 mL of distilled or demineralized water?                                                                     |     |    |
| 6.    | Additional water added at 1 to 3 mL as necessary until mass is uniform and of a stiff consistency?                                    |     |    |
| 7.    | No dry soil added after test has begun?                                                                                               |     |    |
| 8.    | If soil was too wet, was sample discarded or allowed to dry?                                                                          |     |    |
| Proc  | edure                                                                                                                                 | Yes | No |
| 1.    | Sample placed in cup and spread to 10 mm maximum thickness?                                                                           |     |    |
| 2.    | Care taken to avoid entrapment of air bubbles?                                                                                        |     |    |
| 3.    | Soil in cup divided through centerline of follower to the bottom of the cup in no more than six strokes?                              |     |    |
| 4.    | Liquid Limit Device counter zeroed and base checked for level?                                                                        |     |    |
| 5.    | Was cup lifted and dropped at two revolutions per second until gap at bottom of groove closed about 0.5 in (13mm) in 22 to 28 blows?  |     |    |
| 6.    | Blows to closure recorded?                                                                                                            |     |    |
| 7.    | Was closure in acceptable blow count material?                                                                                        |     |    |
| 8.    | Was material removed from cup and placed in a covered container?                                                                      |     |    |
| 9.    | Was procedure repeated a second time from step 1-6 without adding water?                                                              |     |    |
| 10    | Was second closure within two blows of first closure? If not was test rerun?                                                          |     |    |
| 11.   | Was sample removed from device and moisture content determined per T 265?                                                             |     |    |
| 12.   | Were all calculations performed correctly?                                                                                            |     |    |

| First Attempt: Pass   | Fail | Second Attempt: | Pass | Fail |
|-----------------------|------|-----------------|------|------|
| Signature of Examiner |      |                 |      |      |
| Comments:             |      |                 |      |      |

# WSDOT Errata to FOP for AASHTO R 90

## Sampling Aggregate Products

WAQTC FOP for AASHTO R 90 has been adopted by WSDOT with the following changes:

#### Procedure - General

TABLE 1 Recommended Sample Sizes – Shall conform to the following table, nominal maximum size definition and note.

| Nominal Maxim | um Size*in (mm) | Minimum N | Mass Ib (kg) |
|---------------|-----------------|-----------|--------------|
| US No. 4      | (4.75)          | 5         | (2)          |
| 1⁄4           | (6.3)           | 10        | (4)          |
| 3⁄8           | (9.5)           | 10        | (4)          |
| 1/2           | (12.5)          | 20        | (8)          |
| 5⁄8           | (16.0)          | 20        | (8)          |
| 3⁄4           | (19.0)          | 30        | (12)         |
| 1             | (25.0)          | 55        | (25)         |
| 1¼            | (31.5)          | 70        | (30)         |
| 1½            | (37.5)          | 80        | (36)         |
| 2             | (50)            | 90        | (40)         |
| 2½            | (63)            | 110       | (50)         |
| 3             | (75)            | 140       | (60)         |
| 3½            | (90)            | 180       | (80)         |

\*For Aggregate, the nominal maximum size sieve is the largest standard sieve opening listed in the applicable specification upon which more than 1-percent of the material by weight is permitted to be retained. For concrete aggregate, the nominal maximum size sieve is the smallest standard sieve opening through which the entire amount of aggregate is permitted to pass.

*Note:* For an aggregate specification having a generally unrestrictive gradation (i.e., wide range of permissible upper sizes), where the source consistently fully passes a screen substantially smaller than the maximum specified size, the nominal maximum size, for the purpose of defining sampling and test specimen size requirements may be adjusted to the screen, found by experience to retain no more than 5 percent of the materials.

**Procedure – Specific Situations** 

Roadways

Method A (Berm or Windrow) – Method not recognized by WSDOT.

Method B (In-Place) – Method not recognized by WSDOT.

#### SAMPLING AGGREGATE PRODUCTS FOP FOR AASHTO R 90

#### Scope

This procedure covers sampling of coarse, fine, or a combination of coarse and fine aggregates (CA and FA) in accordance with AASHTO R 90-18. Sampling from conveyor belts, transport units, roadways, and stockpiles is covered.

## Apparatus

- Shovels or scoops, or both
- Brooms, brushes, and scraping tools
- Sampling tubes of acceptable dimensions
- Mechanical sampling systems: normally a permanently attached device that allows a sample container to pass perpendicularly through the entire stream of material or diverts the entire stream of material into the container by manual, hydraulic, or pneumatic operation
- Belt template
- Sampling containers

#### Procedure – General

Sampling is as important as testing. The technician shall use every precaution to obtain samples that are representative of the material. Determine the time or location for sampling in a random manner.

- 1. Wherever samples are taken, obtain multiple increments of approximately equal size.
- 2. Mix the increments thoroughly to form a field sample that meets or exceeds the minimum mass recommended in Table 1.

37\_R90\_short\_18

Aggregate 9-1

#### FOP AASHTO R 90 (18)

#### WAQTC

| ĸ | 90 |  |
|---|----|--|
|   |    |  |

AGGREGATE

| incommented sample sizes |               |  |  |  |
|--------------------------|---------------|--|--|--|
| Nominal Maximum          |               |  |  |  |
| Size*                    | Minimum Mass  |  |  |  |
| mm (in.)                 | g (lb)        |  |  |  |
| 90 (3 1/2)               | 175,000 (385) |  |  |  |
| 75 (3)                   | 150,000 (330) |  |  |  |
| 63 (21/2)                | 125,000 (275) |  |  |  |
| 50 (2)                   | 100,000 (220) |  |  |  |
| 37.5 (1 1/2)             | 75,000 (165)  |  |  |  |
| 25.0 (1)                 | 50,000 (110)  |  |  |  |
| 19.0 (3/4)               | 25,000 (55)   |  |  |  |
| 12.5 (1/2)               | 15,000 (35)   |  |  |  |
| 9.5 (3/8)                | 10,000 (25)   |  |  |  |
| 4.75 (No. 4)             | 10,000 (25)   |  |  |  |
| 2.36 (No. 8)             | 10,000 (25)   |  |  |  |

TABLE 1Recommended Sample Sizes

\* One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size. Maximum size is one size larger than nominal maximum size.

*Note 1:* Sample size is based upon the test(s) required. As a general rule, the field sample size should be such that, when split twice will provide a testing sample of proper size. For example, the sample size may be four times that shown in Table 1 of the FOP for AASHTO T 27/T 11, if that mass is more appropriate.

## **Procedure – Specific Situations**

#### **Conveyor Belts**

Avoid sampling at the beginning or end of the aggregate run due to the potential for segregation. Be careful when sampling in the rain. Make sure to capture fines that may stick to the belt or that the rain tends to wash away.

#### Method A (From the Belt)

- 1. Stop the belt.
- 2. Set the sampling template in place on the belt, avoiding intrusion by adjacent material.
- 3. Remove the material from inside the template, including all fines.
- 4. Obtain at least three approximately equal increments.
- 5. Combine the increments to form a single sample.

Aggregate 9-2

### Method B (From the Belt Discharge)

- 1. Pass a sampling device through the full stream of the material as it runs off the end of the conveyor belt. The sampling device may be manually, semi-automatic or automatically powered.
- 2. The sampling device shall pass through the stream at least twice, once in each direction, without overfilling while maintaining a constant speed during the sampling process.
- 3. When emptying the sampling device into the container, include all fines.
- 4. Combine the increments to form a single sample.

## **Transport Units**

- 1. Visually divide the unit into four quadrants.
- 2. Identify one sampling location in each quadrant.
- 3. Dig down and remove approximately 0.3 m (1 ft.) of material to avoid surface segregation. Obtain each increment from below this level.
- 4. Combine the increments to form a single sample.

#### Roadways

## Method A (Berm or Windrow)

- 1. Obtain sample before spreading.
- 2. Take the increments from at least three random locations along the fully formed windrow or berm. Do not take the increments from the beginning or the end of the windrow or berm.
- 3. Obtain full cross-section samples of approximately equal size at each location. Take care to exclude the underlying material.
- 4. Combine the increments to form a single sample.
- *Note 2:* Obtaining samples from berms or windrows may yield extra-large samples and may not be the preferred sampling location.

## Method B (In-Place)

- 1. Obtain sample after spreading and before compaction.
- 2. Take the increments from at least three random locations.
- 3. Obtain full-depth increments of approximately equal size from each location. Take care to exclude the underlying material.
- 4. Combine the increments to form a single sample.

#### AGGREGATE

WAQTC

#### Stockpiles

#### Method A – Loader Sampling

- 1. Direct the loader operator to enter the stockpile with the bucket at least150 mm (6 in.) above ground level without contaminating the stockpile.
- 2. Discard the first bucketful.
- 3. Have the loader re-enter the stockpile and obtain a full loader bucket of the material, tilt the bucket back and up.
- 4. Form a small sampling pile at the base of the stockpile by gently rolling the material out of the bucket with the bucket just high enough to permit free flow of the material. (Repeat as necessary.)
- 5. Create a flat surface by having the loader back drag the small pile.
- 6. Visually divide the flat surface into four quadrants.
- 7. Collect an increment from each quadrant by fully inserting the shovel into the flat pile as vertically as possible, take care to exclude the underlying material, roll back the shovel and lift the material slowly out of the pile to avoid material rolling off the shovel.
- 8. Combine the increments to form a single sample.

#### Method B – Stockpile Face Sampling

- 1. Create horizontal surfaces with vertical faces in the top, middle, and bottom third of the stockpile with a shovel or loader.
- 2. Prevent continued sloughing by shoving a flat board against the vertical face. Sloughed material will be discarded to create the horizontal surface.
- 3. Obtain sample from the horizontal surface as close to the intersection as possible of the horizontal and vertical faces.
- 4. Obtain at least one increment of equal size from each of the top, middle, and bottom thirds of the pile.
- 5. Combine the increments to form a single sample.

#### Method C – Alternate Tube Method (Fine Aggregate)

- 1. Remove the outer layer that may have become segregated.
- 2. Using a sampling tube, obtain one increment of equal size from a minimum of five random locations on the pile.
- 3. Combine the increments to form a single sample.

Aggregate 9-4

#### WAQTC

R 90

#### Identification and Shipping

- Identify samples according to agency standards.
- Include sample report (below).
- Ship samples in containers that will prevent loss, contamination, or damage of material.

#### Report

- On forms approved by the agency
- Date
- Time
- Sample ID
- Sampling method
- Location
- Quantity represented
- Material type
- Supplier

37\_R90\_short\_18

Aggregate 9-5

AGGREGATE

WAQTC

37\_R90\_short\_18

Aggregate 9-6

## WAQTC

## PERFORMANCE EXAM CHECKLIST

|    | AMPLING AGGREGATE PRODUCTS<br>DP FOR AASHTO R 90                                                            |                          |         |
|----|-------------------------------------------------------------------------------------------------------------|--------------------------|---------|
| Pa | rticipant NameExam Da                                                                                       | ate                      |         |
| Re | ecord the symbols "P" for passing or "F" for failing on each                                                | h step of the checklist. |         |
| Pr | ocedure Element                                                                                             | Trial 1                  | Trial 2 |
| Co | onveyor Belts – Method A (From the Belt)                                                                    |                          |         |
| 1. | Belt stopped?                                                                                               |                          |         |
| 2. | Sampling template set on belt, avoiding intrusion of adj material?                                          | acent                    |         |
| 3. | Sample, including all fines, scooped off?                                                                   |                          |         |
| 4. | Samples taken in at least three approximately equal inclusion                                               | rements?                 |         |
| Co | onveyor Belts – Method B (From the Belt Discharge)                                                          |                          |         |
| 5. | Sampling device passed through full stream of material (once in each direction) as it runs off end of belt? | twice                    |         |
| Tr | ransport Units                                                                                              |                          |         |
| 6. | Unit divided into four quadrants?                                                                           |                          |         |
| 7. | Increment obtained from each quadrant, 0.3 m (1ft.) be                                                      | low surface?             |         |
| 8. | Increments combined to make up the sample?                                                                  |                          |         |
| Ro | oadways Method A (Berm or Windrow)                                                                          |                          |         |
| 9. | Sample taken before spreading?                                                                              |                          |         |
| 10 | . Full depth of material taken?                                                                             |                          |         |
| 11 | . Underlying material excluded?                                                                             |                          |         |
| 12 | . Samples taken in at least three approximately equal inc                                                   | rements?                 |         |
| Ro | padways Method B (In-place)                                                                                 |                          |         |
| 13 | . Sample taken after spreading?                                                                             |                          |         |
| 14 | Full depth of material taken?                                                                               |                          |         |
| 15 | . Underlying material excluded?                                                                             |                          |         |
| 16 | . Samples taken in at least three approximately equal inc                                                   | rements?                 |         |

## **OVER**

17\_R90\_pr\_18

Aggregate 3-11

## WAQTC

## Stockpile Method A- (Loader sampling)

| 17. Loader operator directed to enter the stockpile with the bucket at least 150 mm (6 in.) above ground level without contaminating the stockpile?                                  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 18. First bucketful discarded?                                                                                                                                                       |  |  |
| 19. The loader re-entered the stockpile and obtained a full loader bucket of the material with the bucket tilted back and up?                                                        |  |  |
| 20. A small sampling pile formed at the base of the stockpile by gently rolling the material out of the bucket with the bucket just high enough to permit free-flow of the material? |  |  |
| 21. A flat surface created by the loader back dragging the small pile?                                                                                                               |  |  |
| 22. Increment sampled from each quadrant by fully inserting the shovel into the flat pile as vertically as possible, care taken to exclude the underlying material?                  |  |  |
| Stockpile Method B (Stockpile Face)                                                                                                                                                  |  |  |
| 23. Created horizontal surfaces with vertical faces?                                                                                                                                 |  |  |
| 24. At least one increment taken from each of the top,<br>middle, and bottom thirds of the stockpile.                                                                                |  |  |
| Stockpile Method C – Alternate Tube Method (Fine Aggregate)                                                                                                                          |  |  |
| 25. Outer layer removed?                                                                                                                                                             |  |  |
| 26. Increments taken from at least five locations with a sampling tube?                                                                                                              |  |  |
| General                                                                                                                                                                              |  |  |
| 27. Increments mixed thoroughly to form sample?                                                                                                                                      |  |  |
| Comments: First attempt: PassFailSecond attempt: PassFail                                                                                                                            |  |  |
|                                                                                                                                                                                      |  |  |
|                                                                                                                                                                                      |  |  |
|                                                                                                                                                                                      |  |  |
|                                                                                                                                                                                      |  |  |
|                                                                                                                                                                                      |  |  |
| Examiner Signature WAQTC #:                                                                                                                                                          |  |  |
|                                                                                                                                                                                      |  |  |
|                                                                                                                                                                                      |  |  |
|                                                                                                                                                                                      |  |  |
|                                                                                                                                                                                      |  |  |

17\_R90\_pr\_18

#### PERFORMANCE EXAM CHECKLIST (ORAL)

#### SAMPLING AGGREGATE PRODUCTS FOP FOR AASHTO R 90

Participant Name Exam Date Record the symbols "P" for passing or "F" for failing on each step of the checklist. **Procedure Element** Trial 1 Trial 2 1. How is a sample obtained from a conveyor belt using Method A? a. Stop the belt. b. Set the sampling template on belt, avoiding intrusion of adjacent material. c. All the material is removed from belt including all fines. d. Take at least three approximately equal increments. 2. How is a sample obtained from a conveyor belt using Method B? a. Pass the sampling device through a full stream of material as it runs off the end of the belt. b. The device must be passed through at least twice (once in each direction). 3. How is a sample obtained from a Transport Unit? a. Divide the unit into four quadrants. b. Dig 0.3 m (1 ft.) below surface. c. Obtain an increment from each quadrant. 4. Describe the procedure for sampling from roadways Method A (Berm or Windrow). a. Sample before spreading \_\_\_\_ b. Sample the material full depth without obtaining underlying material.

c. Take at least three approximately equal increments.

#### **OVER**

18\_R90\_pr\_oral\_18

Aggregate 3-13

| Pr                                                                                                       | ocedure Element                                                                                                                                                   | Trial 1   | Trial 2 |  |  |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|--|--|
| 5.                                                                                                       | Describe the procedure for sampling from roadway Method B<br>(In-place).                                                                                          |           |         |  |  |
|                                                                                                          | a. Sample after spreading, before compaction.                                                                                                                     |           |         |  |  |
|                                                                                                          | b. Sample the material full depth without obtaining underlying material                                                                                           | l         |         |  |  |
|                                                                                                          | c. Take at least three approximately equal increments.                                                                                                            |           |         |  |  |
| 6.                                                                                                       | Describe the procedure for sampling a stockpile Method A (Loader Sampling).                                                                                       |           |         |  |  |
|                                                                                                          | a. Loader removes contaminates and creates sampling pile.                                                                                                         |           |         |  |  |
|                                                                                                          | b. Loader back drags pile to create a flat surface.                                                                                                               |           |         |  |  |
|                                                                                                          | c. Divide the flat surface into four quadrants.                                                                                                                   |           |         |  |  |
|                                                                                                          | d. Take an approximately equal increment from each quadrant, excluding the underlying material.                                                                   |           |         |  |  |
| 7.                                                                                                       | <b>Describe the procedure for sampling a stockpile Method B</b><br>(Stockpile Face Sampling).<br>a. Create horizontal surfaces with vertical faces with a shovel. |           |         |  |  |
|                                                                                                          | b. At least one increment taken from each of the top, middle, and bottom thirds of the stockpile.                                                                 |           |         |  |  |
| 8. Describe the procedure for sampling a stockpile Method C –<br>Alternate Tube Method (Fine Aggregate). |                                                                                                                                                                   |           |         |  |  |
|                                                                                                          | a. Remove the outer layer of segregated material.                                                                                                                 |           |         |  |  |
|                                                                                                          | b. Obtain increments from at least five locations.                                                                                                                |           |         |  |  |
| 9.                                                                                                       | After obtaining the increments what should you do before performing R 76?                                                                                         |           |         |  |  |
|                                                                                                          | a. Increments mixed thoroughly to form sample.                                                                                                                    |           |         |  |  |
| Сс                                                                                                       | omments: First attempt: PassFailSecond attempt: Pa                                                                                                                | uss]      | Fail    |  |  |
|                                                                                                          |                                                                                                                                                                   |           |         |  |  |
|                                                                                                          |                                                                                                                                                                   |           |         |  |  |
| Ex                                                                                                       | aminer SignatureWAQTC #:                                                                                                                                          |           |         |  |  |
| 18                                                                                                       | _R90_pr_oral_18 Aggregate 3-14 Pub                                                                                                                                | . October | 2021    |  |  |

WAQTC

AGGREGATE

FOP AASHTO R 90 (18)

# WSDOT Errata to FOP for AASHTO R 97

## Sampling Asphalt Mixtures

## WAQTC FOP for AASHTO R 97 has been adopted by WSDOT with the following changes:

#### Sample Size

For Acceptance sampling and testing only: WSDOT requires a minimum of two times the amount required for testing. This should be approximately 60 lbs.

For Acceptance and Conformation sampling and testing or for Test Section sampling and testing: WSDOT requires a minimum of four times the amount required for testing. This should be approximately 120 lbs. (See WSDOT *Construction Manual* Section 9-3.7 for Conformation sampling frequency)

*Note:* When sampling or testing for Determination of the Moving Average of Theoretical Maximum Density (TMD) for Asphalt Mixtures, please refer to WSDOT SOP 729.

#### Procedure

#### General

Include the steps below:

- Immediately upon obtaining a sample, using a verified thermometer, check and record temperature of the sample.
- The material shall be tested to determine variations. The supplier/contractor shall sample the HMA mixture in the presence of the Project Engineer. The supplier/contractor shall provide one of the following for safe and representative sampling:
  - a. A mechanical sampling device installed between the discharge of the silo and the truck transport that is approved by the Regional Materials Engineer.
  - b. Platforms or devices to enable sampling from the truck transport without entering the truck transport for sampling Asphalt Mixtures.

Conveyor Belts - Method not recognized by WSDOT.

Paver Auger - Method not recognized by WSDOT.

Windrow - Method not recognized by WSDOT.

#### Roadway before Compaction

**Method 1 - Obtaining a Sample on Grade or Untreated Base (Plate Method) -** *Method not recognized by WSDOT.* 

**Method 2 - Obtaining a Sample on Asphalt Surface (Non-Plate Method) -** *Method not recognized by WSDOT.* 

#### Stockpiles

Method 1 - Loader - Method not recognized by WSDOT.

Method 2 - Stockpile Face - Method not recognized by WSDOT.

## SAMPLING ASPHALT MIXTURES FOP FOR AASHTO R 97

## Scope

This procedure covers the sampling of asphalt mixtures from plants, haul units, and roadways in accordance with AASHTO R 97-19. Sampling is as important as testing, use care to obtain a representative sample and to avoid segregation and contamination of the material during sampling.

This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

#### Apparatus

- Shovel or Metal Scoops, or Other Equipment: square-head metal shovels at least 125 mm (5.5 in.) wide.
- Sample containers: such as cardboard boxes, metal cans, stainless steel bowls, or other agency-approved containers
- Sampling plate: thick metal plate, minimum 8 gauge, sized to accommodate sample requirements, with a wire attached to one corner long enough to reach from the center of the paver to the outside of the farthest auger extension. A minimum of one hole 6 mm (0.25 in.) in diameter must be provided in a corner of the plate.
- Cookie cutter sampling device: formed steel angle with two 100 mm by 150 mm by 9 mm (4 in. by 6 in. by 3/8 in.) handles, sized to accommodate sample requirements. Minimum 50 mm (2 in.) smaller than the sampling plate when used together.

*Example:* Sampling plate 380 mm (15 in.) square and a cookie cutter sampling device 330 mm (13 in.) square.

- Mechanical sampling device: a permanently attached device that allows a sample receptacle to pass perpendicularly through the entire stream of material or diverts the entire stream of material into the container by manual, hydraulic, or pneumatic operation.
- Release agent: a non-stick product that prevents the asphalt mixture from sticking to the apparatus and does not contain solvents or petroleum-based products that could affect asphalt binder properties.

#### Sample Size

Sample size depends on the test methods specified by the agency for acceptance. Check agency requirement for the size required.

#### ASPHALT

WAQTC

## Procedure

## General

- Select sample locations using a random or stratified random sampling procedure, as specified by the agency. The material shall be tested to determine variations. The supplier/contractor shall provide equipment for safe and appropriate sampling, including sampling devices on plants when required.
- Ensure the container(s) and sampling equipment are clean and dry before sampling.
- For dense graded mixture samples use cardboard boxes, stainless steel bowls or other agency-approved containers.
- For hot open graded mixture samples use stainless steel bowls. Do not put open graded mixture samples in boxes until they have cooled to the point that asphalt binder will not migrate from the aggregate.

## **Attached Sampling Devices**

These are normally permanently attached devices that allow a sample container to pass perpendicularly through the entire stream of material. Operation may be hydraulic, pneumatic, or manual and allows the sample container to pass through the stream twice, once in each direction, without overfilling. A sampling device may also divert the entire stream into a sampling receptacle.

- 1. Lightly coat the container attached to the sampling device with an agency-approved release agent or preheat it, or both, to approximately the same discharge temperature of the mix.
- 2. Pass the container twice through the material perpendicularly without overfilling the container.
- 3. Transfer the asphalt mixture to an agency-approved container without loss of material.
- 4. Repeat until proper sample size has been obtained.
- 5. Combine the increments to form a single sample.

#### **Conveyor Belts**

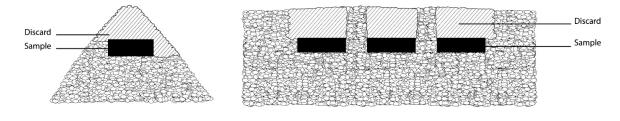
- 1. Avoid sampling at the beginning or end of an asphalt mixture production run due to the potential for segregation.
- 2. Stop the belt containing asphalt mixture.
- 3. Set the sampling template into the asphalt mixture on the belt, avoiding intrusion by adjacent material.
- 4. Remove the asphalt mixture from inside the template, including all fines, and place in a sample container.
- 5. Repeat, obtaining equal size increments, until proper sample size has been obtained.
- 6. Combine the increments to form a single sample.

Asphalt 13-2

#### WAQTC

#### Haul Units

- 1. Visually divide the haul unit into approximately four equal quadrants.
- 2. Identify one sampling location in each quadrant.
- 3. Dig down and remove approximately 0.3 m (1 ft.) of material to avoid surface segregation. Obtain each increment from below this level.
- 4. Combine the increments to form a sample of the required size.


#### **Paver Auger**

- 1. Obtain samples from the end of the auger using a square head shovel.
- 2. Place the shovel in front of the auger extension, with the shovel blade flat upon the surface to be paved over.
- 3. Allow the front face of the auger stream to cover the shovel with asphalt mixture, remove the shovel before the auger reaches it by lifting as vertically as possible.
- 4. Place asphalt mixture in a sample container.
- 5. Repeat until proper sample size has been obtained.
- 6. Combine the increments to form a sample of the required size.

*Note 1:* First full shovel of material may be discarded to preheat and 'butter' the shovel.

#### Windrow

- 1. Obtain samples from the windrow of a transport unit. Avoid the beginning or the end of the windrow section.
- 2. Visually divide the windrow into approximately three equal sections.
- 3. Remove approximately 0.3 m (1 ft) from the top of each section.
- 4. Fully insert the shovel into the flat surface as vertically as possible, exclude the underlying material, roll back the shovel and lift the material slowly out of the windrow to avoid material rolling off the shovel.
- 5. Place in a sample container.
- 6. Repeat, obtaining equal size increments, in each of the remaining thirds.
- 7. Combine the increments to form a sample of the required size.



Windrow cross section

Windrow side view

#### 45 R97 short 20

Asphalt 13-3

#### ASPHALT

## **Roadway before Compaction**

There are two conditions that will be encountered when sampling asphalt mixtures from the roadway before compaction. The two conditions are:

- Laying asphalt mixture on grade or untreated base material requires Method 1.
- Laying asphalt mixture on existing asphalt or laying a second lift of asphalt mixture requires Method 2.

## SAFETY:

Sampling is performed behind the paving machine and in front of the breakdown roller. For safety, the roller must remain at least 3 m (10 ft.) behind the sampling operation until the sample has been taken and the hole filled with loose asphalt mixture.

Method 1 requires a plate to be placed in the roadway in front of the paving operation and therefore there is always concern with moving, operating equipment. It is safest to stop the paving train while a plate is installed in front of the paver. When this is not possible the following safety rules must be followed.

- 1. The plate placing operation must be at least 3 m (10 ft.) in front of the paver or pickup device. The technician placing the plate must have eye contact and communication with the paving machine operator. If eye contact cannot be maintained at all time, a third person must be present to provide communication between the operator and the technician.
- 2. No technician is to be between the asphalt supply trucks and the paving machine. The exception to this rule is if the supply truck is moving forward creating a windrow, in which case the technician must be at least 3 m (10 ft.) behind the truck.

If at any time the Engineer feels that the sampling technique is creating an unsafe condition, the operation is to be halted until it is made safe or the paving operation will be stopped while the plate is being placed.

## Method 1 - Obtaining a Sample on Grade or Untreated Base (Plate Method)

- 1. Following the safety rules detailed above, the technician is to:
  - a. Smooth out a location in front of the paver at least 0.5 m (2 ft.) inside the edge of the mat.
  - b. Lay the plate down diagonally with the direction of travel, keeping it flat and tight to the base with the lead corner facing the paving machine.

*Note 2:* The plate may be secured by driving a nail through the hole in the lead corner of the plate.

- 2. Pull the wire, attached to the outside corner of the plate, taut past the edge of the asphalt mixture mat and secure it. Let the paving operation pass over the plate and wire.
- 3. Using the exposed end of the wire, pull the wire up through the fresh asphalt mixture to locate the corner of the plate.

45 R97 short 20

Asphalt 13-4

R 97

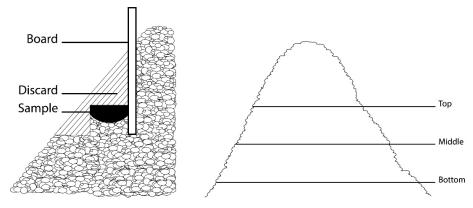
- a. Plate only:
  - i. Using a small square head shovel or scoop, or both, remove the full depth of the asphalt mixture from the plate. Take care to prevent sloughing of adjacent material.
  - ii. Place asphalt mixture, including any material adhering to the plate and scoop or shovel in a sample container.
- b. "Cookie Cutter":
  - i. Place the "cookie cutter" sample device, just inside the end of the wire; align the cutter over the plate. Press "cookie cutter" device down through the asphalt mixture to the plate.
  - ii. Using a small square tipped shovel or scoop, or both, carefully remove all the asphalt mixture from inside of the cutter and place in a sample container.
  - iii. Remove the sample cutter and the plate from the roadway. The hole made from the sampling must be filled by the contractor with loose asphalt mixture.

# Method 2 - Obtaining a Sample on Asphalt Surface (Non-plate Method)

- 1. After the paving machine has passed the sampling point, immediately place the "cookie cutter" sampling device on the location to be sampled.
- 2. Push the cutter down through the asphalt mixture until it is flat against the underlying asphalt mat.
- 3. Using a small square tipped shovel or scoop, or both, carefully remove all the asphalt mixture from inside of the cutter and place in a sample container.
- 4. Remove the cutter from the roadway. The hole made from the sampling must be filled by the contractor with loose asphalt mixture.

# Stockpiles

Remove at least 0.1 m (4 in.) from the surface before sampling; mixtures in a stockpile may develop an oxidized crust.


# Method 1 – Loader

- 1. Direct the loader operator to enter the stockpile with the bucket at least 0.3 m (1 ft) above ground level without contaminating the stockpile.
- 2. Obtain a full loader bucket of the asphalt mixture; tilt the bucket back and up.
- 3. Form a small sampling pile at the base of the stockpile by gently rolling the asphalt mixture out of the bucket with the bucket just high enough to permit free-flow of the mixture. Repeat as necessary.
- 4. Create a flat surface by having the loader "back-drag" the small pile.

- 5. Obtain approximately equal increments from at least three randomly selected locations on the flat surface at least 0.3 m (1 ft) from the edge.
- 6. Fully insert the shovel, exclude the underlying material, roll back the shovel and lift the asphalt mixture slowly out of the pile to avoid mixture rolling off the shovel.
- 7. Combine the increments to form a sample.

#### Method 2 – Stockpile Face

- 1. Create horizontal surfaces with vertical faces in the top, middle, and bottom third of the stockpile with a shovel or a loader if one is available.
- 2. Shove a flat board against the vertical face behind the sampling location to prevent sloughing of asphalt mixture. Discard the sloughed mixture to create the horizontal surface.
- 3. Obtain the sample from the horizontal surface as close as possible to the intersection of the horizontal and vertical faces.
- 4. Obtain at least one sample increment of equal size from each of the top, middle, and bottom thirds of the pile.
- 5. Combine the increments to form a single sample.



# Identification and Shipping

- 1. Identify sample containers as required by the agency.
- 2. Ship samples in containers that will prevent loss, contamination, or damage.

Asphalt 13-6

### ASPHALT

# WAQTC

# FOP AASHTO R 97 (20)

# Report

- On forms approved by the agency
- Sample ID
- Date
- Time
- Location
- Quantity represented

45\_R97\_short\_20

ASPHALT

WAQTC

45\_R97\_short\_20

Asphalt 13-8

Pub. October 2021

Page 10 of 14

WSDOT Materials Manual M 46-01.40 January 2022

### PERFORMANCE EXAM CHECKLIST

### SAMPLING ASPHALT MIXTURES FOP FOR AASHTO R 97

| Participant Name  | Exam Data |
|-------------------|-----------|
| r articipant Name | Exam Date |

# Record the symbols "P" for passing or "F" for failing on each step of the checklist.

| Pro                                  | ocedure Element                                                         | Trial 1 | Trial 2 |
|--------------------------------------|-------------------------------------------------------------------------|---------|---------|
| At                                   | tached Sampling Device                                                  |         |         |
| 1.                                   | Container coated or preheated or both?                                  |         |         |
| 2.                                   | Sampling device passed through stream twice perpendicular to material?  |         |         |
| 3.                                   | Sampling device not over filled?                                        |         |         |
| Co                                   | nveyor Belt                                                             |         |         |
| 4.                                   | Belt stopped?                                                           |         |         |
| 5.                                   | Sampling template set on belt, avoiding intrusion of adjacent material? |         |         |
| 6.                                   | Sample, including all fines, scooped off?                               |         |         |
| Ha                                   | ul Units                                                                |         |         |
| 7.                                   | Unit divided into four quadrants?                                       |         |         |
| 8.                                   | Increment obtained from each quadrant, 0.3 m (1ft.) below surface?      |         |         |
| 9.                                   | Increments combined to make up the sample?                              |         |         |
| Pa                                   | ver Auger                                                               |         |         |
| 10.                                  | Shovel blade flat on the surface to be paved?                           |         |         |
| 11.                                  | Shovel lifted vertically after it is filled?                            |         |         |
| Wi                                   | ndrow                                                                   |         |         |
| 12.                                  | Beginning and end avoided?                                              |         |         |
| 13.                                  | Equal increments obtained from three sections?                          |         |         |
| 14.                                  | Approximately 0.3 m (1 ft) removed from top of each section?            |         |         |
| 15.                                  | Underlying material excluded?                                           |         |         |
| Roadway Before Compaction (Method 1) |                                                                         |         |         |
| 16.                                  | Plate placed well in front of paver?                                    |         |         |
| 17.                                  | Wire pulled to locate plate corner?                                     |         |         |
|                                      | OVER                                                                    |         |         |

Asphalt 3-13

ASPHALT

| Procedure Element                                                                                                                                                                                         | Trial 1    | Trial 2 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|
| 18. Cookie cutter (if used) placed on asphalt and pushed through to plate?                                                                                                                                |            |         |
| 19. All material removed from inside the cutter?                                                                                                                                                          |            |         |
| Roadway Before Compaction (Method 2)                                                                                                                                                                      |            |         |
| 20. Cookie cutter placed on asphalt and pushed through to underlying material?                                                                                                                            |            |         |
| 21. All material removed from inside the cutter?                                                                                                                                                          |            |         |
| Stockpile Method 1– (Loader sampling)                                                                                                                                                                     |            |         |
| 22. Loader operator directed to enter the stockpile with the bucket at least 0.3 m (1 ft) above ground level without contaminating the stockpile?                                                         |            |         |
| 23. The loader obtained a full loader bucket of the material with the bucket tilted back and up?                                                                                                          |            |         |
| 24. A small sampling pile formed at the base of the stockpile by gently rolling the material out of the bucket with the bucket just high enough to permit free-flow of the material?                      |            |         |
| 25. A flat surface created by the loader back dragging the small pile?                                                                                                                                    |            |         |
| 26. Increment sampled from three locations at least 0.3 m (1 ft) from the edge by fully inserting the shovel into the flat pile as vertically as possible, care taken to exclude the underlying material? |            |         |
| Stockpile Method 2 (Stockpile Face)                                                                                                                                                                       |            |         |
| 27. Created horizontal surfaces with vertical faces?                                                                                                                                                      |            |         |
| 28. Sample obtained from the horizontal face as close as possible to the vertical face?                                                                                                                   |            |         |
| 29. At least one increment taken from each of the top, middle, and bottom thirds of the stockpile?                                                                                                        |            |         |
| General                                                                                                                                                                                                   |            |         |
| 30. Sample placed in appropriate container?                                                                                                                                                               |            |         |
| 31. Sample size meets agency requirements?                                                                                                                                                                |            |         |
| 32. Sample identified as required?                                                                                                                                                                        |            |         |
| Comments: First attempt: PassFail Second attempt: PassFail                                                                                                                                                | ass        | Fail    |
|                                                                                                                                                                                                           |            |         |
| Examiner Signature WAQTC #:                                                                                                                                                                               |            |         |
|                                                                                                                                                                                                           |            |         |
| 17_R97_pr_19 Asphalt 3-14 Pub                                                                                                                                                                             | o. October | r 2021  |

# PERFORMANCE EXAM CHECKLIST (ORAL)

# SAMPLING ASPHALT MIXTURES FOP FOR AASHTO R 97

| Par | rtici                                               | pant Name Exam Date                                                                     |          |         |
|-----|-----------------------------------------------------|-----------------------------------------------------------------------------------------|----------|---------|
| Rec | cord                                                | the symbols "P" for passing or "F" for failing on each step of the checklist.           |          |         |
| Pr  | oce                                                 | dure Element                                                                            | Trial 1  | Trial 2 |
| 1.  |                                                     | the hot plant, how must a sample be obtained using an attached mpling device?           |          |         |
|     | a.                                                  | Coat or preheat sample container.                                                       |          |         |
|     | b.                                                  | Sampling device passed through stream twice perpendicular to material.                  |          |         |
|     | c.                                                  | The sampling device cannot be overfilled.                                               |          |         |
| 2.  | Ho                                                  | ow is a sample obtained from a conveyor belt?                                           |          |         |
|     | a.                                                  | Stop the belt.                                                                          |          |         |
|     | b.                                                  | Set the sampling template on belt, avoiding intrusion of adjacent material.             |          |         |
|     | c.                                                  | All the material is removed from belt including all fines.                              |          |         |
| 3.  | . What must be done to sample from transport units? |                                                                                         |          |         |
|     | a.                                                  | Divide the unit into four quadrants.                                                    |          |         |
|     | b.                                                  | Obtain increments from each quadrant, 0.3 m (1 ft) below surface.                       |          |         |
| 4.  | Ho                                                  | ow is a sample obtained from the paver auger?                                           |          |         |
|     | a.                                                  | Shovel blade is placed flat on the surface to be paved in front of the auger extension? |          |         |
|     | b.                                                  | Shovel is filled and removed by lifting as vertically as possible?                      |          |         |
| 5.  | De                                                  | Describe the procedure for sampling from a windrow.                                     |          |         |
|     | a.                                                  | Do not sample from the beginning or end of the windrow.                                 |          |         |
|     | b.                                                  | Approximately 0.3 m (1 ft) removed from the top.                                        |          |         |
|     | c.                                                  | Underlying material is excluded                                                         |          |         |
|     | d.                                                  | Equal increments obtained from 3 locations along the windrow.                           | <u> </u> |         |

#### OVER

Asphalt 3-15

| 6. | ocedure Element                                                                                                                                                                           | Trial 1 | 1116 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|
| υ. | Describe how to take samples from the roadway using Method 1 (p                                                                                                                           | olate). |      |
|    | a. Place the plate well in front of the paver.                                                                                                                                            |         |      |
|    | b. Pull the wire to locate the corner of the plate.                                                                                                                                       |         |      |
|    | c. Place the cutter (if used) on the asphalt material above the plate and push it down to the plate.                                                                                      |         |      |
|    | d. Collect all the material inside the cutter.                                                                                                                                            |         |      |
| 7. | Describe how to take samples from the roadway using Method 2.                                                                                                                             |         |      |
|    | a. Place the cutter on the asphalt material and push it down to the underlying material.                                                                                                  |         |      |
|    | b. Collect all the material inside the cutter.                                                                                                                                            |         |      |
| 8. | Describe the procedure for sampling a stockpile Method 1<br>(Loader Sampling).                                                                                                            |         |      |
|    | a. Loader removes surface and creates sampling pile.                                                                                                                                      |         |      |
|    | b. Loader back drags pile to create a flat surface.                                                                                                                                       |         |      |
|    | c. Take three approximately equal increments from at least 0.3 m (1 ft) from the edge, excluding the underlying material.                                                                 |         |      |
| 9. | Describe the procedure for sampling a stockpile Method 2 (Stockpile Face Sampling).                                                                                                       |         |      |
|    | a. Create horizontal surfaces with vertical faces with a shovel.                                                                                                                          |         |      |
|    | b. At least one increment taken from each of the top, middle, and bottom thirds of the stockpile.                                                                                         |         |      |
|    | Increments combined to form a semple of required size?                                                                                                                                    |         |      |
| 10 | Increments combined to form a sample of required size?                                                                                                                                    |         |      |
|    | What types of containers can be used?                                                                                                                                                     |         |      |
|    |                                                                                                                                                                                           |         |      |
| 11 | <ul><li>What types of containers can be used?</li><li>a. Cardboard boxes, stainless steel bowls, or other</li></ul>                                                                       |         |      |
| 11 | <ul><li>What types of containers can be used?</li><li>a. Cardboard boxes, stainless steel bowls, or other agency approved containers.</li></ul>                                           |         |      |
| 11 | <ul> <li>What types of containers can be used?</li> <li>a. Cardboard boxes, stainless steel bowls, or other agency approved containers.</li> <li>What dictates size of sample?</li> </ul> |         |      |

FOP AASHTO R 97 (19)

ASPHALT

# WSDOT Errata to FOP for AASHTO T 99

# Moisture-Density Relations of Soils Using a 2.5 KG (5.5 LB) Rammer and a 305 MM (12 IN.) Drop

WAQTC FOP for AASHTO T 99 has been adopted by WSDOT with the following changes:

# Scope

Replace with below:

This procedure covers the determination of the moisture-density relations of soils and soilaggregate mixtures in accordance with two similar test methods:

AASHTO T 99-19: Methods A, B, C, and D

AASHTO T 180-20: Methods A, B, C, and D

This test method applies to soil mixtures having **30** percent or less retained on the 4.75 mm (No. 4) sieve for methods A or B, or, 30 percent or less retained on the 19 mm (¾ in) with methods C or D. The retained material is defined as oversize (coarse) material. If no minimum percentage is specified, 5 percent will be used. Samples that contain oversize (coarse) material that meet percent retained criteria should be corrected by using *Annex A*, *Correction of Maximum Dry Density and Optimum Moisture for Oversized Particles*. Samples of soil or soil-aggregate mixture are prepared at several moisture contents and compacted into molds of specified size, using manual or mechanical rammers that deliver a specified quantity of compactive energy. The moist masses of the compacted samples are multiplied by the appropriate factor to determine wet density values. Moisture contents of the compacted and used to obtain the dry density values of the same samples. Maximum dry density and optimum moisture content for the soil or soil-aggregate mixture is determined by plotting the relationship between dry density and moisture content.

# MOISTURE-DENSITY RELATIONS OF SOILS: USING A 2.5 KG (5.5 LB) RAMMER AND A 305 MM (12 IN.) DROP FOP FOR AASHTO T 99

USING A 4.54 KG (10 LB) RAMMER AND A 457 MM (18 IN.) DROP FOP FOR AASHTO T 180

# Scope

This procedure covers the determination of the moisture-density relations of soils and soilaggregate mixtures in accordance with two similar test methods:

- AASHTO T 99-21: Methods A, B, C, and D
- AASHTO T 180-21: Methods A, B, C, and D

This test method applies to soil mixtures having 40 percent or less retained on the 4.75 mm (No. 4) sieve for methods A or B, or 30 percent or less retained on the 19 mm ( $\frac{3}{4}$  in.) sieve with methods C or D. The retained material is defined as oversize (coarse) material. If no minimum percentage is specified, 5 percent will be used. Samples that contain oversize (coarse) material that meet percent retained criteria should be corrected by using *Annex A*, *Correction of Maximum Dry Density and Optimum Moisture for Oversized Particles*. Samples of soil or soil-aggregate mixture are prepared at several moisture contents and compacted into molds of specified size, using manual or mechanical rammers that deliver a specified quantity of compactive energy. The moist masses of the compacted samples are multiplied by the appropriate factor to determine wet density values. Moisture contents of the compacted samples are determined and used to obtain the dry density values of the same samples. Maximum dry density and optimum moisture content for the soil or soil-aggregate mixture is determined by plotting the relationship between dry density and moisture content.

# Apparatus

- Mold Cylindrical mold made of metal with the dimensions shown in Table 1 or Table 2. If permitted by the agency, the mold may be of the "split" type, consisting of two half-round sections, which can be securely locked in place to form a cylinder. Determine the mold volume according to *Annex B, Standardization of the Mold*.
- Mold assembly Mold, base plate, and a detachable collar.
- Rammer Manually or mechanically operated rammers as detailed in Table 1 or Table 2. A manually operated rammer shall be equipped with a guide sleeve to control the path and height of drop. The guide sleeve shall have at least four vent holes no smaller than 9.5 mm (3/8 in.) in diameter, spaced approximately 90 degrees apart and approximately 19 mm (3/4 in.) from each end. A mechanically operated rammer will uniformly distribute blows over the sample and will be calibrated with several soil types, and be adjusted, if necessary, to give the same moisture-density results as with the manually operated rammer. For additional information concerning calibration, see the FOP for AASHTO T 99 and T 180.

E&B/ID 13-1

- Sample extruder A jack, lever frame, or other device for extruding compacted specimens from the mold quickly and with little disturbance.
- Balance(s) or scale(s) of the capacity and sensitivity required for the procedure used by the agency.

A balance or scale with a capacity of 11.5 kg (25 lb) and a sensitivity of 1 g for obtaining the sample, meeting the requirements of AASHTO M 231, Class G 5.

A balance or scale with a capacity of 2 kg and a sensitivity of 0.1 g is used for moisture content determinations done under both procedures, meeting the requirements of AASHTO M 231, Class G 2.

- Drying apparatus A thermostatically controlled drying oven, capable of maintaining a temperature of 110 ±5°C (230 ±9°F) for drying moisture content samples in accordance with the FOP for AASHTO T 255/T 265.
- Straightedge A steel straightedge at least 250 mm (10 in.) long, with one beveled edge and at least one surface plane within 0.1 percent of its length, used for final trimming.
- Sieve(s) 4.75 mm (No. 4) and/or 19.0 mm (3/4 in.), meeting the requirements of FOP for AASHTO T 27/T 11.
- Mixing tools Miscellaneous tools such as a mixing pan, spoon, trowel, spatula, etc., or a suitable mechanical device, for mixing the sample with water.
- Containers with close-fitting lids to prevent gain or loss of moisture in the sample.

45\_T99\_T180\_short\_21\_errata

E&B/ID 13-2

|                              | Т 99                             | T 180                            |
|------------------------------|----------------------------------|----------------------------------|
| Mold Volume, m <sup>3</sup>  | Methods A, C: 0.000943 ±0.000014 | Methods A, C: 0.000943 ±0.000014 |
|                              | Methods B, D: 0.002124 ±0.000025 | Methods B, D: 0.002124 ±0.000025 |
| Mold Diameter, mm            | Methods A, C: 101.60 ±0.40       | Methods A, C: 101.60 ±0.4        |
|                              | Methods B, D: 152.40 ±0.70       | Methods B, D: 152.40 ±0.70       |
| Mold Height, mm              | $116.40 \pm 0.50$                | $116.40 \pm 0.50$                |
| Detachable Collar Height, mm | $50.80 \pm 0.64$                 | $50.80 \pm 0.64$                 |
| Rammer Diameter, mm          | $50.80 \pm 0.25$                 | $50.80 \pm 0.25$                 |
| Rammer Mass, kg              | $2.495 \pm 0.009$                | $4.536 \pm 0.009$                |
| Rammer Drop, mm              | 305                              | 457                              |
| Layers                       | 3                                | 5                                |
| Blows per Layer              | Methods A, C: 25                 | Methods A, C: 25                 |
|                              | Methods B, D: 56                 | Methods B, D: 56                 |
| Material Size, mm            | Methods A, B: 4.75 minus         | Methods A, B: 4.75 minus         |
|                              | Methods C, D: 19.0 minus         | Methods C, D: 19.0 minus         |
| Test Sample Size, kg         | Method A: 3                      | Method B: 7                      |
|                              | Method C: 5 (1)                  | Method D: 11(1)                  |
| Energy, kN-m/m <sup>3</sup>  | 592                              | 2,693                            |

Table 1 **Comparison of Apparatus, Sample, and Procedure – Metric** 

(1) This may not be a large enough sample depending on your nominal maximum size for moisture content samples.

| -                             |                               | 8                             |
|-------------------------------|-------------------------------|-------------------------------|
|                               | Т 99                          | T 180                         |
| Mold Volume, ft <sup>3</sup>  | Methods A, C: 0.0333 ±0.0005  | Methods A, C: 0.0333 ±0.0005  |
|                               | Methods B, D: 0.07500 ±0.0009 | Methods B, D: 0.07500 ±0.0009 |
| Mold Diameter, in.            | Methods A, C: 4.000 ±0.016    | Methods A, C: 4.000 ±0.016    |
|                               | Methods B, D: 6.000 ±0.026    | Methods B, D: 6.000 ±0.026    |
| Mold Height, in.              | $4.584 \pm 0.018$             | $4.584 \pm 0.018$             |
| Detachable Collar Height, in. | $2.000 \pm 0.025$             | $2.000 \pm 0.025$             |
| Rammer Diameter, in.          | $2.000 \pm 0.025$             | $2.000 \pm 0.025$             |
| Rammer Mass, lb               | 5.5 ±0.02                     | 10 ±0.02                      |
| Rammer Drop, in.              | 12                            | 18                            |
| Layers                        | 3                             | 5                             |
| Blows per Layer               | Methods A, C: 25              | Methods A, C: 25              |
|                               | Methods B, D: 56              | Methods B, D: 56              |
| Material Size, in.            | Methods A, B: No. 4 minus     | Methods A, B: No.4 minus      |
|                               | Methods C, D: 3/4 minus       | Methods C, D: 3/4 minus       |
| Test Sample Size, lb          | Method A: 7                   | Method B: 16                  |
|                               | Method C: $12_{(1)}$          | Method D: $25_{(1)}$          |
| Energy, lb-ft/ft <sup>3</sup> | 12,375                        | 56,250                        |

| Table 2                                                  |
|----------------------------------------------------------|
| Comparison of Apparatus, Sample, and Procedure – English |

(1) This may not be a large enough sample depending on your nominal maximum size for moisture content samples.

# Sample

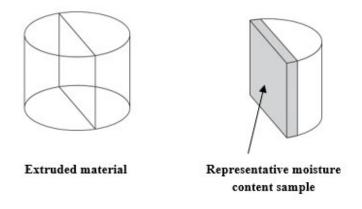
If the sample is damp, dry it until it becomes friable under a trowel. Drying may be in air or by use of a drying apparatus maintained at a temperature not exceeding  $60^{\circ}$ C (140°F). Thoroughly break up aggregations in a manner that avoids reducing the natural size of individual particles.

Obtain a representative test sample of the mass required by the agency by passing the material through the sieve required by the agency. See Table 1 or Table 2 for test sample mass and material size requirements.

In instances where the material is prone to degradation, i.e., granular material, a compaction sample with differing moisture contents should be prepared for each point.

If the sample is plastic (clay types), it should stand for a minimum of 12 hours after the addition of water to allow the moisture to be absorbed. In this case, several samples at different moisture contents should be prepared, put in sealed containers, and tested the next day.

*Note 1:* Both T 99 and T 180 have four methods (A, B, C, D) that require different masses and employ different sieves.


# Procedure

During compaction, rest the mold firmly on a dense, uniform, rigid, and stable foundation, or base. This base shall remain stationary during the compaction process.

- 1. Determine the mass of the clean, dry mold. Include the base plate but exclude the extension collar. Record the mass to the nearest 1 g (0.005 lb).
- 2. Thoroughly mix the selected representative sample with sufficient water to dampen it to approximately 4 to 8 percentage points below optimum moisture content. For many materials, this condition can be identified by forming a cast by hand.
  - a. Prepare individual samples of plastic or degradable material, increasing moisture contents 1 to 2 percent for each point.
  - b. Allow samples of plastic soil to stand for 12 hrs.
- 3. Form a specimen by compacting the prepared soil in the mold assembly in approximately equal layers. For each layer:
  - a. Spread the loose material uniformly in the mold.
  - *Note 2:* It is recommended to cover the remaining material with a non-absorbent sheet or damp cloth to minimize loss of moisture.
  - b. Lightly tamp the loose material with the manual rammer or other similar device, this establishes a firm surface.
  - c. Compact each layer with uniformly distributed blows from the rammer. See Table 1 for mold size, number of layers, number of blows, and rammer specification for the various test methods. Use the method specified by the agency.
  - d. Trim down material that has not been compacted and remains adjacent to the walls of the mold and extends above the compacted surface.

| 45_T99_T180_short_21_errata | E&B/ID 13-4 | Pub. October 2021 |
|-----------------------------|-------------|-------------------|
|-----------------------------|-------------|-------------------|

- 4. Remove the extension collar. Avoid shearing off the sample below the top of the mold. The material compacted in the mold should not be over 6 mm (1/4 in.) above the top of the mold once the collar has been removed.
- 5. Trim the compacted soil even with the top of the mold with the beveled side of the straightedge.
- 6. Clean soil from exterior of the mold and base plate.
- 7. Determine and record the mass of the mold, base plate, and wet soil to the nearest 1 g (0.005 lb) or better.
- 8. Determine and record the wet mass (M<sub>w</sub>) of the sample by subtracting the mass in Step 1 from the mass in Step 7.
- 9. Calculate the wet density ( $\rho_w$ ), in kg/m<sup>3</sup> (lb/ft<sup>3</sup>), by dividing the wet mass by the measured volume (V<sub>m</sub>).
- 10. Extrude the material from the mold. For soils and soil-aggregate mixtures, slice vertically through the center and remove one of the cut faces for a representative moisture content sample. For granular materials, a vertical face will not exist. Take a representative sample ensuring that all layers are represented. This sample must meet the sample size requirements of the test method used to determine moisture content.



- *Note 3:* When developing a curve for free-draining soils such as uniform sands and gravels, where seepage occurs at the bottom of the mold and base plate, taking a representative moisture content from the mixing bowl may be preferred in order to determine the amount of moisture available for compaction.
- 11. Determine and record the moisture content of the sample in accordance with the FOP for AASHTO T 255 / T 265.
- 12. If the material is degradable or plastic, return to Step 3 using a prepared individual sample. If not, continue with Steps 13 through 15.
- 13. Thoroughly break up the remaining portion of the molded specimen until it will again pass through the sieve, as judged by eye, and add to the remaining portion of the sample being tested.
- 14. Add sufficient water to increase the moisture content of the remaining soil by 1 to 2 percentage points and repeat steps 3 through 11.

E&B/ID 13-5

45\_T99\_T180\_short\_21\_errata

15. Continue determinations until there is either a decrease or no change in the wet mass. There will be a minimum of three points on the dry side of the curve and two points on the wet side. For non-cohesive, drainable soils, one point on the wet side is sufficient.

WAQTC

# Calculations

Wet Density

$$\rho_w = \frac{M_w}{V_m}$$

Where:

 $\rho_w = \text{wet density, } \text{kg/m}^3 (\text{lb/ft}^3)$   $M_w = \text{wet mass}$   $V_m = \text{volume of the mold, Annex B}$ 

**Dry Density** 

$$\rho_d = \left(\frac{\rho_w}{w+100}\right) \times 100 \quad or \quad \rho_d = \frac{\rho_w}{\left(\frac{w}{100}\right) + 1}$$

Where:

 $\rho_d = dry density, kg/m^3 (lb/ft^3)$  w = moisture content, as a percentage

#### Example for 4-inch mold, Methods A or C

| Wet mass, M <sub>w</sub>           | = | 1.928 kg (4.25 lb)                           |
|------------------------------------|---|----------------------------------------------|
| Moisture content, w                | = | 11.3%                                        |
| Measured volume of the mold, $V_m$ | = | $0.000946 \text{ m}^3 (0.0334 \text{ ft}^3)$ |

Wet Density

$$\rho_w = \frac{1.928 \ kg}{0.000946 \ m^3} = 2038 \ kg/m^3 \quad \rho_w = \frac{4.25 \ lb}{0.0334 \ ft^3} = 127.2 \ lb/ft^3$$

45 T99 T180 short 21 errata

E&B/ID 13-6

## WAQTC

**Dry Density** 

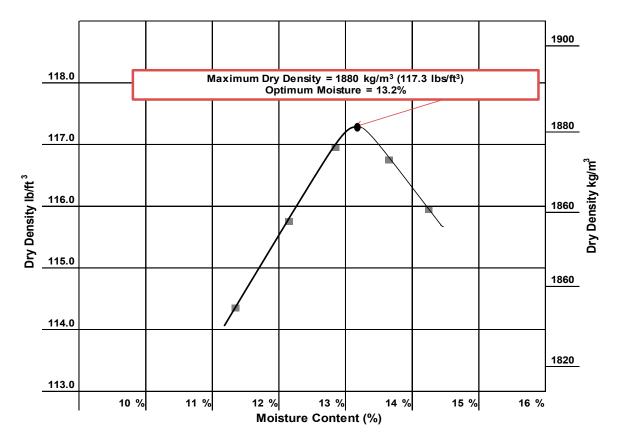
$$\rho_d = \left(\frac{2038 \, kg/m^3}{11.3 + 100}\right) \times 100 = 1831 \, kg/m^3 \ \rho_d = \left(\frac{127.2 \, lb/ft^3}{11.3 + 100}\right) \times 100 = 114.3 \, lb/ft^3$$

Or

$$\rho_d = \left(\frac{2038 \, kg/m^3}{\frac{11.3}{100} + 1}\right) = 1831 \, kg/m^3 \ \rho_d = \left(\frac{127.2 \, lb/ft^3}{\frac{11.3}{100} + 1}\right) = 114.3 \, lb/ft^3$$

# **Moisture-Density Curve Development**

When dry density is plotted on the vertical axis versus moisture content on the horizontal axis and the points are connected with a smooth line, a moisture-density curve is developed. The coordinates of the peak of the curve are the maximum dry density, or just "maximum density," and the "optimum moisture content" of the soil.


#### Example

Given the following dry density and corresponding moisture content values develop a moisture-density relations curve and determine maximum dry density and optimum moisture content.

| Dry Density       |                    | Moisture Content, % |
|-------------------|--------------------|---------------------|
| kg/m <sup>3</sup> | lb/ft <sup>3</sup> |                     |
| 1831              | 114.3              | 11.3                |
| 1853              | 115.7              | 12.1                |
| 1873              | 116.9              | 12.8                |
| 1869              | 116.7              | 13.6                |
| 1857              | 115.9              | 14.2                |

45\_T99\_T180\_short\_21\_errata

E&B/ID 13-7



WAQTC

In this case, the curve has its peak at:

Maximum dry density= $1880 \text{ kg/m}^3 (117.3 \text{ lb/ft}^3)$ Optimum moisture content=13.2%

Note that both values are approximate since they are based on sketching the curve to fit the points.

# Report

- Results on forms approved by the agency
- Sample ID
- Maximum dry density to the nearest 1 kg/m<sup>3</sup> (0.1 lb/ft<sup>3</sup>)
- Optimum moisture content to the nearest 0.1 percent

45\_T99\_T180\_short\_21\_errata

E&B/ID 13-8

# ANNEX A CORRECTION OF MAXIMUM DRY DENSITY AND OPTIMUM MOISTURE FOR OVERSIZED PARTICLES

### (Mandatory Information)

This section corrects the maximum dry density and moisture content of the material retained on the 4.75 mm (No. 4) sieve, Methods A and B; or the material retained on the 19 mm ( $\frac{3}{4}$  in.) sieve, Methods C and D. The maximum dry density, corrected for oversized particles and total moisture content, are compared with the field-dry density and field moisture content.

This correction can be applied to the sample on which the maximum dry density is performed. A correction may not be practical for soils with only a small percentage of oversize material. The agency shall specify a minimum percentage below which the method is not needed. If not specified, this method applies when more than 5 percent by weight of oversize particles is present.

Bulk specific gravity ( $G_{sb}$ ) of the oversized particles is required to determine the corrected maximum dry density. Use the bulk specific gravity as determined using the FOP for AASHTO T 85 in the calculations. For construction activities, an agency established value or specific gravity of 2.600 may be used.

This correction can also be applied to the sample obtained from the field while performing in-place density.

### Procedure

- 1. Use the sample from this procedure or a sample obtained according to the FOP for AASHTO T 310.
- 2. Sieve the sample on the 4.75 mm (No. 4) sieve for Methods A and B or the 19 mm (<sup>3</sup>/<sub>4</sub> in.) sieve, Methods C and D.
- 3. Determine the dry mass of the oversized and fine fractions  $(M_{DC} \text{ and } M_{DF})$  by one of the following:
  - a. Dry the fractions, fine and oversized, in air or by use of a drying apparatus that is maintained at a temperature not exceeding 60°C (140°F).
  - b. Calculate the dry masses using the moisture samples.

To determine the dry mass of the fractions using moisture samples.

- 1. Determine the moist mass of both fractions, fine  $(M_{Mf})$  and oversized  $(M_{Mc})$ :
- 2. Obtain moisture samples from the fine and oversized material.
- 3. Determine the moisture content of the fine particles  $(MC_f)$  and oversized particles  $(MC_C)$  of the material by FOP for AASHTO T 255/T 265 or agency approved method.
- 4. Calculate the dry mass of the oversize and fine particles.

E&B/ID 13-9

Pub. October 2021

$$M_D = \frac{M_m}{1 + \mathrm{MC}}$$

WAQTC

Where:

 $M_D$  = mass of dry material (fine or oversize particles)

M<sub>m</sub> = mass of moist material (fine or oversize particles)

MC = moisture content of respective fine or oversized, expressed as a decimal

5. Calculate the percentage of the fine (P<sub>f</sub>) and oversized (P<sub>c</sub>) particles by dry weight of the total sample as follows: See Note 2.

$$P_f = \frac{100 \times M_{DF}}{M_{DF} + M_{DC}} \qquad \frac{100 \times 15.4 \, lb}{15.4 \, lbs + 5.7 \, lb} = 73\% \qquad \frac{100 \times 6.985 \, kg}{6.985 \, kg + 2.585 \, kg} = 73\%$$

And

$$P_{c} = \frac{100 \times M_{DC}}{M_{DF} + M_{DC}} \qquad \frac{100 \times 5.7 \, lb}{15.4 \, lbs + 5.7 \, lb} = 27\% \qquad \frac{100 \times 2.585 \, kg}{6.985 \, kg + 2.585 \, kg} = 27\%$$

Or for Pc:

$$P_{c} = 100 - P_{f}$$

Where:

- $P_f$  = percent of fine particles, of sieve used, by weight
- P<sub>c</sub> = percent of oversize particles, of sieve used, by weight

 $M_{DF}$  = mass of dry fine particles

 $M_{DC}$  = mass of dry oversize particles

45 T99 T180 short 21 errata

#### WAQTC

#### **Optimum Moisture Correction Equation**

1. Calculate the corrected moisture content as follows:

$$MC_{T} = \frac{\left(MC_{F} \times P_{f}\right) + \left(MC_{c} \times P_{c}\right)}{100} \qquad \frac{\left(13.2\% \times 73.0\%\right) + \left(2.1\% \times 27.0\%\right)}{100} = 10.2\%$$

 $MC_T$  = corrected moisture content of combined fines and oversized particles, expressed as a % moisture

MC<sub>F</sub> = moisture content of fine particles, as a % moisture

MC<sub>C</sub> = moisture content of oversized particles, as a % moisture

- *Note 1:* Moisture content of oversize material can be assumed to be two (2) percent for most construction applications.
- *Note 2:* In some field applications agencies will allow the percentages of oversize and fine materials to be determined with the materials in the wet state.

#### **Density Correction Equation**

2. Calculate the corrected dry density ( $\rho_d$ ) of the total sample (combined fine and oversized particles) as follows:

$$\rho_{d} = \frac{100\%}{\left[\left(\frac{P_{f}}{\rho_{f}}\right) + \left(\frac{P_{c}}{k}\right)\right]}$$

Where:

- $\rho_d = \text{corrected total dry density (combined fine and oversized particles)}$   $kg/m^3 (lb/ft^3)$
- $\rho_f$  = dry density of the fine particles kg/m<sup>3</sup> (lb/ft<sup>3</sup>), determined in the lab
- $P_c$  = percent of dry oversize particles, of sieve used, by weight.
- $P_f$  = percent of dry fine particles, of sieve used, by weight.
- $k = Metric: 1,000 * Bulk Specific Gravity (G_{sb}) (oven dry basis) of coarse particles (kg/m<sup>3</sup>).$
- $k = \text{English: } 62.4 * \text{Bulk Specific Gravity } (G_{sb}) \text{ (oven dry basis)}$ of coarse particles (lb/ft<sup>3</sup>)

*Note 3:* If the specific gravity is known, then this value will be used in the calculation. For most construction activities the specific gravity for aggregate may be assumed to be 2.600.

45\_T99\_T180\_short\_21\_errata

E&B/ID 13-11

# Calculation

# Example

• Metric:

| Maximum laboratory dry density ( $\rho_f$ ): | 1880 kg/m <sup>3</sup>                 |
|----------------------------------------------|----------------------------------------|
| Percent coarse particles (Pc):               | 27%                                    |
| Percent fine particles (Pf):                 | 73%                                    |
| Mass per volume coarse particles (k):        | $(2.697) (1000) = 2697 \text{ kg/m}^3$ |

$$\rho_d = \frac{100\%}{\left[\left(\frac{P_f}{\rho_f}\right) + \left(\frac{P_c}{k}\right)\right]}$$

$$\rho_d = \frac{100\%}{\left[ \left( \frac{73\%}{1880 \, kg/m^3} \right) + \left( \frac{27\%}{2697 \, kg/m^3} \right) \right]}$$

 $\rho_d = \frac{100\%}{[0.03883 \, kg/m^3 + 0.01001 \, kg/m^3]}$ 

$$\rho_d = 2047.5 \, kg/m^3 \, report \, 2048 \, kg/m^3$$

 $45\_T99\_T180\_short\_21\_errata$ 

Pub. October 2021

# WAQTC

#### FOP AASHTO T 99 / T 180 (21)

English:

| Maximum laboratory dry density (pf):      | 117.3 lb/ft <sup>3</sup> |
|-------------------------------------------|--------------------------|
| Percent coarse particles (Pc):            | 27%                      |
| Percent fine particles (P <sub>f</sub> ): | 73%                      |
|                                           |                          |

Mass per volume of coarse particles (k):  $(2.697)(62.4) = 168.3 \text{ lb/ft}^3$ 

$$\rho_d = \frac{100\%}{\left[ \left( \frac{P_f}{\rho_f} \right) + \left( \frac{P_c}{k} \right) \right]}$$

$$\rho = \frac{100\%}{\left[ \left( \frac{73\%}{117.3 \, lb/ft^3} \right) + \left( \frac{27\%}{168.3 \, lb/ft^3} \right) \right]}$$

$$\rho_d = \frac{100\%}{[0.6223 \ lb/ft^3 + 0.1604 \ lb/ft^3]}$$

$$\rho_d = \frac{100\%}{0.7827 \ lb/ft^3}$$

$$\rho_d = 127.76 \ lb/ft^3 \ Report \ 127.8 \ lb/ft^3$$

# Report

- On forms approved by the agency
- Sample ID
- Corrected maximum dry density to the nearest 1 kg/m<sup>3</sup> (0.1 lb/ft<sup>3</sup>)
- Corrected optimum moisture to the nearest 0.1 percent

45\_T99\_T180\_short\_21\_errata

E&B/ID 13-13

# ANNEX B STANDARDIZATION OF THE MOLD

(Mandatory Information)

Standardization is a critical step to ensure accurate test results when using this apparatus. Failure to perform the standardization procedure as described herein will produce inaccurate or unreliable test results.

# Apparatus

- Mold and base plate
- Balance or scale Accurate to within 45 g (0.1 lb) or 0.3 percent of the test load, whichever is greater, at any point within the range of use.
- Cover plate A piece of plate glass, at least 6 mm (1/4 in.) thick and at least 25 mm (1 in.) larger than the diameter of the mold.
- Thermometers Standardized liquid-in-glass, or electronic digital total immersion type, accurate to 0.5°C (1°F)

# Procedure

- 1. Create a watertight seal between the mold and base plate.
- 2. Determine and record the mass of the dry sealed mold, base plate, and cover plate.
- 3. Fill the mold with water at a temperature between 16°C and 29°C (60°F and 85°F) and cover with the cover plate in such a way as to eliminate bubbles and excess water.
- 4. Wipe the outside of the mold, base plate, and cover plate dry, being careful not to lose any water from the mold.
- 5. Determine and record the mass of the filled mold, base plate, cover plate, and water.
- 6. Determine and record the mass of the water in the mold by subtracting the mass in Step 2 from the mass in Step 5.
- 7. Measure the temperature of the water and determine its density from Table B1, interpolating, as necessary.
- 8. Calculate the volume of the mold,  $V_m$ , by dividing the mass of the water in the mold by the density of the water at the measured temperature.

45\_T99\_T180\_short\_21\_errata

E&B/ID 13-14

Pub. October 2021

WSDOT Materials Manual M 46-01.40 January 2022

### WAQTC

# Calculations

$$V_m = \frac{M}{\rho_{water}}$$

Where:

| $V_{m}$ | =              | volume of the mold                           |
|---------|----------------|----------------------------------------------|
| М       | =              | mass of water in the mold                    |
| pwate   | <sub>r</sub> = | density of water at the measured temperature |

Example

Mass of water in mold=
$$0.94367 \text{ kg} (2.0800 \text{ lb})$$
 $\rho_{water}$  at 23°C (73.4°F)=997.54 kg/m³ (62.274 lb/ft³)

$$V_m = \frac{0.94367 \ kg}{997.54 \ kg/m^3} = 0.000946 \ m^3 \qquad V_m = \frac{2.0800 \ lb}{62.274 \ lb/ft^3} = 0.0334 \ ft^3$$

| 15°C to 30°C |        |                   |                       |      |        |                   |                       |
|--------------|--------|-------------------|-----------------------|------|--------|-------------------|-----------------------|
| °C           | (°F)   | kg/m <sup>3</sup> | (lb/ft <sup>3</sup> ) | °C   | (°F)   | kg/m <sup>3</sup> | (lb/ft <sup>3</sup> ) |
| 15           | (59.0) | 999.10            | (62.372)              | 23   | (73.4) | 997.54            | (62.274)              |
| 15.6         | (60.0) | 999.01            | (62.366)              | 23.9 | (75.0) | 997.32            | (62.261)              |
| 16           | (60.8) | 998.94            | (62.361)              | 24   | (75.2) | 997.29            | (62.259)              |
| 17           | (62.6) | 998.77            | (62.350)              | 25   | (77.0) | 997.03            | (62.243)              |
| 18           | (64.4) | 998.60            | (62.340)              | 26   | (78.8) | 996.77            | (62.227)              |
| 18.3         | (65.0) | 998.54            | (62.336)              | 26.7 | (80.0) | 996.59            | (62.216)              |
| 19           | (66.2) | 998.40            | (62.328)              | 27   | (80.6) | 996.50            | (62.209)              |
| 20           | (68.0) | 998.20            | (62.315)              | 28   | (82.4) | 996.23            | (62.192)              |
| 21           | (69.8) | 997.99            | (62.302)              | 29   | (84.2) | 995.95            | (62.175)              |
| 21.1         | (70.0) | 997.97            | (62.301)              | 29.4 | (85.0) | 995.83            | (62.166)              |
| 22           | (71.6) | 997.77            | (62.288)              | 30   | (86.0) | 995.65            | (62.156)              |

# Table B1Unit Mass of Water

45\_T99\_T180\_short\_21\_errata

E&B/ID 13-15

Pub. October 2021

1

# Report

- Mold ID
- Date Standardized
- Temperature of the water
- Volume,  $V_m$ , of the mold to the nearest 0.000001 m<sup>3</sup> (0.0001 ft<sup>3</sup>)

45\_T99\_T180\_short\_21\_errata

E&B/ID 13-16

# PERFORMANCE EXAM CHECKLIST

# MOISTURE-DENSITY RELATION OF SOILS FOP FOR AASHTO T 99

| Par | tici | ipant Name Exam Date                                                                                                                                          |         |         |
|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|
| Rec | ord  | the symbols "P" for passing or "F" for failing on each step of the checklist.                                                                                 |         |         |
| Pro | oce  | dure Element                                                                                                                                                  | Trial 1 | Trial 2 |
| 1.  |      | damp, sample dried in air or drying apparatus, not exceeding °C (140°F)?                                                                                      |         |         |
| 2.  | sie  | mple broken up and an adequate amount sieved over the appropriate ve (4.75 mm / No. 4 or 19.0 mm / 3/4 in.) to determine oversize (coarse rticle) percentage? |         |         |
| 3.  | Sa   | mple passing the sieve has appropriate mass?                                                                                                                  |         |         |
| 4.  | Ifı  | material is degradable:                                                                                                                                       |         |         |
|     | a.   | Multiple samples mixed with water varying moisture content<br>by 1 to 2 percent, bracketing the optimum moisture content?                                     |         |         |
| 5.  | Ifs  | soil is plastic (clay types):                                                                                                                                 |         |         |
|     | a.   | Multiple samples mixed with water varying moisture content by 1 to 2 percent, bracketing the optimum moisture content?                                        |         |         |
|     | b.   | Samples placed in covered containers and allowed to stand for at least 12 hours?                                                                              |         |         |
| 6.  |      | mple determined to be 4 to 8 percent below expected optimum<br>pisture content?                                                                               |         |         |
| 7.  | De   | termine mass of clean, dry mold without collar to nearest 1 g (0.005 lb.)?                                                                                    |         |         |
| 8.  | Mo   | old placed on rigid and stable foundation?                                                                                                                    |         |         |
| 9.  |      | yer of soil (approximately one third compacted depth) placed in mold<br>th collar attached, loose material lightly tamped?                                    |         |         |
| 10. | So   | il compacted with appropriate number of blows (25 or 56)?                                                                                                     |         |         |
| 11. | Ma   | aterial adhering to the inside of the mold trimmed?                                                                                                           |         |         |
| 12. |      | yer of soil (approximately two thirds compacted depth) placed in mold<br>th collar attached, loose material lightly tamped?                                   |         |         |
| 13. | So   | il compacted with appropriate number of blows (25 or 56)?                                                                                                     |         |         |
| 14. | Ma   | aterial adhering to the inside of the mold trimmed?                                                                                                           |         |         |
| 15. |      | old filled with soil such that compacted soil will be above the mold, ose material lightly tamped?                                                            |         |         |

### OVER

20\_T99\_pr\_18

E&B/ID 4-25

| WAQTC |
|-------|
|-------|

# FOP AASHTO T 99/T 180 (18)

| Procedure Element                                                                                                                                   | Trial 1     | Trial 2 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|
| 16. Soil compacted with appropriate number of blows (25 or 56)?                                                                                     |             |         |
| 17. Collar removed without shearing off sample?                                                                                                     |             |         |
| 18. Approximately 6 mm (1/4 in.) of compacted material above the top of the mold (without the collar)?                                              |             |         |
| 19. Soil trimmed to top of mold with the beveled side of the straightedge?                                                                          |             |         |
| 20. Remove all soil from exterior surface of mold and base plate?                                                                                   |             |         |
| 21. Mass of mold and contents determined to appropriate precision (1 g)?                                                                            |             |         |
| 22. Wet density calculated from the wet mass?                                                                                                       |             |         |
| 23. Soil removed from mold using a sample extruder if needed?                                                                                       |             |         |
| 24. Soil sliced vertically through center (non-granular material)?                                                                                  |             |         |
| 25. Moisture sample removed ensuring all layers are represented?                                                                                    |             |         |
| 26. Moist mass determined immediately to 0.1 g?                                                                                                     |             |         |
| 27. Moisture sample mass of correct size?                                                                                                           |             |         |
| 28. Sample dried, and water content determined according to the FOP for<br>T 255/T 265?                                                             |             |         |
| a. Remainder of material from mold broken up until it will pass through<br>the sieve, as judged by eye, and added to remainder of original test sam | ple?        |         |
| b. Water added to increase moisture content of the remaining sample in approximately 1 to 2 percent increments?                                     |             |         |
| c. Steps 7 through 29 repeated for each increment of water added?                                                                                   |             |         |
| 29. Process continued until wet density either decreases or stabilizes?                                                                             |             |         |
| 30. Moisture content and dry density calculated for each sample?                                                                                    |             |         |
| 31. Dry density plotted on vertical axis, moisture content plotted on<br>horizontal axis, and points connected with a smooth curve?                 |             |         |
| 32. Moisture content at peak of curve recorded as optimum water content and recorded to nearest 0.1 percent?                                        |             |         |
| 33. Dry density at optimum moisture content reported as maximum density to<br>nearest 1 kg/m <sup>3</sup> (0.1 lb/ft <sup>3</sup> )?                |             |         |
| 34. Corrected for coarse particles if applicable?                                                                                                   |             |         |
| Comments: First attempt: Pass_Fail_Second attempt: Pas                                                                                              | ss <u>l</u> | Fail    |
|                                                                                                                                                     |             |         |
| Examiner SignatureWAQTC #:                                                                                                                          |             |         |
| 20_T99_pr_18 E&B/ID 4-26 Pub                                                                                                                        | . October   | 2021    |

# WSDOT Errata to FOP for AASHTO R 100

# Method of Making and Curing Concrete Test Specimens in the Field

WAQTC FOP for AASHTO R 100 has been adopted by WSDOT with the following changes:

#### Scope

#### Include note below:

*Note:* WSDOT testing for determining compressive strength of concrete cylinder specimens shall require a set of two specimens made from the same sample.

#### Apparatus

• Initial curing facilities:

#### Include details below:

Cure Box – The cure box shall be a commercially manufactured cure box meeting AASHTO R 100 standards and the following requirements:

- 1. The interior shall be rustproof with a moisture-proof seal between the lid and the box.
- 2. The lid shall lock or have loops for padlocks that allow the box to be locked.
- 3. The box shall be equipped with a heating and cooling system. If the system uses a water circulating system, the box shall be equipped with a bottom drain and an overflow port. The cure box shall provide an environment that prevents loss of moisture from the specimens. The curing temperature and moist environment shall be controlled by the use of heating and cooling devices installed in the cure box.

#### **Procedure – Initial Curing**

**Method 2** – **Initial cure by burying in earth or by using a curing box over the cylinder** – *Method not recognized by WSDOT.* 

Include item below when required:

#### **Field Curing**

If the specimens are made and field cured, as stipulated herein, the resulting strength test data when the specimens are tested are able to be used for the following purposes:

- Determination of whether a structure is capable of being put in service.
- Comparison with test results of standard cured specimens or with test results from various inplace test methods,
- Adequacy of curing and protection of concrete in the structure.
- Form or shoring removal time requirements.

**Cylinders** – Store cylinders in or on the structure as near to the point of deposit of the concrete represented as possible. Protect all surfaces of the cylinders from the elements in as near as possible the same way as the formed work. Provide the cylinders with the same temperature and moisture environment as the structural work. Test the specimens in the moisture condition resulting from the specified curing treatment. To meet these conditions, specimens made for the purpose of determining when a structure is capable of being put in service shall be removed from the molds at the time of removal of form work.

**Beams** – After applying the curing compound to the top surface, cover the beam specimen with white reflective sheeting and allow beams to remain undisturbed for an initial cure period of  $24 \pm 4$  hours at ambient conditions. After the initial cure period, remove the specimen from the mold and cure the specimen either by:

- (1) Burying the specimen in wet sand making sure that the specimen is never allowed to become surface dry. Temperature of the sand should be similar to the concrete pavement temperature.
- Or
- (2) Wrap the beam in a saturated towel, place in a plastic bag, and seal the opening. The plastic should be at least 4 mils thick. Leave the specimen on the pavement in the vicinity where it was molded until time to test. Take specimen to the testing location and store in lime water at 73.4° ± 5°F (23° ± 2.8°C) for 24 ± 4 hours immediately before time of testing to ensure uniform moisture condition from specimen to specimen.

**Note:** The beam specimen must be kept in a surface moist condition or wet environment for the entire time in storage and testing. Even minor amounts of surface drying of the specimen induces extreme fiber stresses which can markedly reduce the flexural strength.

R 100

#### METHOD OF MAKING AND CURING CONCRETE TEST SPECIMENS IN THE FIELD FOP FOR AASHTO R 100

#### Scope

This practice covers the method for making, initially curing, and transporting concrete test specimens in the field in accordance with AASHTO R 100-21.

**Warning**—Fresh Hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.

#### Apparatus

- Concrete cylinder molds: Conforming to AASHTO M 205 with a length equal to twice the diameter. Standard specimens shall be 150 mm (6 in.) by 300 mm (12 in.) cylinders. Mold diameter must be at least three times the maximum aggregate size unless wet sieving is conducted according to the FOP for WAQTC TM 2. Agency specifications may allow cylinder molds of 100 mm (4 in.) by 200 mm (8 in.) when the nominal maximum aggregate size does not exceed 25 mm (1 in.).
- Beam molds: Rectangular in shape with ends and sides at right angles to each other. Must be sufficiently rigid to resist warpage. Surfaces must be smooth. Molds shall produce length no more than 1.6 mm (1/16 in.) shorter than that required (greater length is allowed). Maximum variation from nominal cross section shall not exceed 3.2 mm (1/8 in.). Ratio of width to depth may not exceed 1:5; the smaller dimension must be at least 3 times the maximum aggregate size. Standard beam molds shall result in specimens having width and depth of not less than 150 mm (6 in.). Agency specifications may allow beam molds of 100 mm (4 in.) by 100 mm (4 in.) when the nominal maximum aggregate size does not exceed 38 mm (1.5 in.). Specimens shall be cast and hardened with the long axes horizontal.
- Standard tamping rod: 16 mm (5/8 in.) in diameter and 400 mm (16 in.) to 600 mm (24 in.) long, having a hemispherical tip of the same diameter as the rod for preparing 150 mm (6 in.) x 300 mm (12 in.) cylinders.
- Small tamping rod: 10 mm (3/8 in.) diameter and 305 mm (12 in.) to 600 mm (24 in.) long, having a hemispherical tip of the same diameter as the rod for preparing 100 mm (4 in.) x 200 mm (8 in.) cylinders.
- Vibrator: At least 9000 vibrations per minute, with a diameter no more than <sup>1</sup>/<sub>4</sub> the diameter or width of the mold and at least 75 mm (3 in.) longer than the section being vibrated for use with low slump concrete.
- Scoop: a receptacle of appropriate size so that each representative increment of the concrete sample can be placed in the container without spillage.
- Trowel or float

41\_R100\_short\_21\_errata

Concrete 14-1

FOP AASHTO R 100 (21)

• Rigid base plates and cover plates: may be metal, glass, or plywood.

Mallet: With a rubber or rawhide head having a mass of  $0.57 \pm 0.23$  kg

WAQTC

- Initial curing facilities: Temperature-controlled curing box or enclosure capable of maintaining the required range of 16 to 27°C (60 to 80°F) during the entire initial curing period (for concrete with compressive strength of 40 Mpa (6000 psi) or more, the temperature shall be 20 to 26°C (68 to 78°F). As an alternative, sand or earth for initial cylinder protection may be used provided that the required temperature range is maintained, and the specimens are not damaged.
- Thermometer: Capable of registering both maximum and minimum temperatures during the initial cure.

# Procedure – Making Specimens – General

- 1. Obtain the sample according to the FOP for WAQTC TM 2.
- 2. Wet Sieving per the FOP for WAQTC TM 2 is required for 150 mm (6 in.) diameter specimens containing aggregate with a nominal maximum size greater than 50 mm (2 in.); screen the sample over the 50 mm (2 in.) sieve.
- 3. Remix the sample after transporting to testing location.
- 4. Begin making specimens within 15 minutes of obtaining the sample.
- 5. Set molds upright on a level, rigid base in a location free from vibration and relatively close to where they will be stored.
- 6. Fill molds in the required number of layers, attempting to slightly overfill the mold on the final layer. Add or remove concrete before completion of consolidation to avoid a deficiency or excess of concrete.
- 7. There are two methods of consolidating the concrete rodding and internal vibration. If the slump is greater than 25 mm (1 in.), consolidation may be by rodding or vibration. When the slump is 25 mm (1 in.) or less, consolidate the sample by internal vibration. Agency specifications may dictate when rodding or vibration will be used.

#### Procedure – Making Cylinders –Self-Consolidating Concrete

- 1. Use the scoop to slightly overfill the mold. Evenly distribute the concrete in a circular motion around the inner perimeter of the mold.
- 2. Strike off the surface of the molds with tamping rod, straightedge, float, or trowel.
- 3. Immediately begin initial curing.

Pub. October 2021

 $(1.25 \pm 0.5 \text{ lb.}).$ 

# Procedure – Making Cylinders – Rodding

- 1. For the standard 150 mm (6 in.) by 300 mm (12 in.) specimen, fill each mold in three approximately equal layers, moving the scoop or trowel around the perimeter of the mold to evenly distribute the concrete. For the 100 mm (4 in.) by 200 mm (8 in.) specimen, fill the mold in two layers. When filling the final layer, slightly overfill the mold.
- 2. Consolidate each layer with 25 strokes of the appropriate tamping rod, using the rounded end. Distribute strokes evenly over the cross section of the concrete. Rod the first layer throughout its depth without forcibly hitting the bottom. For subsequent layers, rod the layer throughout its depth penetrating approximately 25 mm (1 in.) into the underlying layer.
- 3. After rodding each layer, tap the sides of each mold 10 to 15 times with the mallet (reusable steel molds) or lightly with the open hand (single-use light-gauge molds).
- 4. Strike off the surface of the molds with tamping rod, straightedge, float, or trowel.
- 5. Immediately begin initial curing.

# Procedure – Making Cylinders – Internal Vibration

- 1. Fill the mold in two layers.
- 2. Insert the vibrator at the required number of different points for each layer (two points for 150 mm (6 in.) diameter cylinders; one point for 100 mm (4 in.) diameter cylinders). When vibrating the bottom layer, do not let the vibrator touch the bottom or sides of the mold. When vibrating the top layer, the vibrator shall penetrate into the underlying layer approximately 25 mm (1 in.)
- 3. Remove the vibrator slowly, so that no large air pockets are left in the material.
- *Note 1:* Continue vibration only long enough to achieve proper consolidation of the concrete. Over vibration may cause segregation and loss of appreciable quantities of intentionally entrained air.
- 4. After vibrating each layer, tap the sides of each mold 10 to 15 times with the mallet (reusable steel molds) or lightly with the open hand (single-use light-gauge molds).
- 5. Strike off the surface of the molds with tamping rod, straightedge, float, or trowel.
- 6. Immediately begin initial curing.

#### Procedure – Making Flexural Beams – Rodding

- 1. Fill the mold in two approximately equal layers with the second layer slightly overfilling the mold.
- 2. Consolidate each layer with the tamping rod once for every 1300 mm<sup>2</sup> (2 in<sup>2</sup>) using the rounded end. Rod each layer throughout its depth, taking care to not forcibly strike the bottom of the mold when compacting the first layer. Rod the second layer throughout its depth, penetrating approximately 25 mm (1 in.) into the lower layer.

41\_R100\_short\_21\_errata

Concrete 14-3

| CO | NIC | $\mathbf{Q}^{r}$ | FТ | ΤF |
|----|-----|------------------|----|----|

3. After rodding each layer, strike the mold 10 to 15 times with the mallet and spade along the sides and end using a trowel.

WAQTC

- 4. Strike off the surface of the molds with tamping rod, straightedge, float, or trowel.
- 5. Immediately begin initial curing.

# Procedure – Making Flexural Beams – Vibration

- 1. Fill the mold to overflowing in one layer.
- 2. Consolidate the concrete by inserting the vibrator vertically along the centerline at intervals not exceeding 150 mm (6 in.). Take care to not over-vibrate and withdraw the vibrator slowly to avoid large voids. Do not contact the bottom or sides of the mold with the vibrator.
- 3. After vibrating, strike the mold 10 to 15 times with the mallet.
- 4. Strike off the surface of the molds with tamping rod, straightedge, float, or trowel.
- 5. Immediately begin initial curing.

#### Procedure – Initial Curing

- When moving cylinder specimens made with single use molds support the bottom of the mold with trowel, hand, or other device.
- For initial curing of cylinders, there are two methods, use of which depends on the agency. In both methods, the curing place must be firm, within <sup>1</sup>/<sub>4</sub> in. of a level surface, and free from vibrations or other disturbances.
- Maintain initial curing temperature:
  - 16 to 27°C (60 to 80°F) for concrete with design strength up to 40 Mpa (6000 psi).
  - 20 to 26°C (68 to 78°F) for concrete with design strength of 40 Mpa (6000 psi) or more.
- Prevent loss of moisture.

#### Method 1 – Initial cure in a temperature-controlled chest-type curing box

- 1. Finish the cylinder using the tamping rod, straightedge, float, or trowel. The finished surface shall be flat with no projections or depressions greater than 3.2 mm (1/8 in.).
- 2. Place the mold in the curing box. When lifting light-gauge molds be careful to avoid distortion (support the bottom, avoid squeezing the sides).
- 3. Place the lid on the mold to prevent moisture loss.
- 4. Mark the necessary identification data on the cylinder mold and lid.

Concrete 14-4

| CONCRETE | WAQTC | FOP AASHTO R 100 (21) |
|----------|-------|-----------------------|
|          |       |                       |

#### Method 2 – Initial cure by burying in earth or by using a curing box over the cylinder

- *Note 2:* This procedure may not be the preferred method of initial curing due to problems in maintaining the required range of temperature.
- 1. Move the cylinder with excess concrete to the initial curing location.
- 2. Mark the necessary identification data on the cylinder mold and lid.
- 3. Place the cylinder on level sand or earth, or on a board, and pile sand or earth around the cylinder to within 50 mm (2 in.) of the top.
- 4. Finish the cylinder using the tamping rod, straightedge, float, or trowel. Use a sawing motion across the top of the mold. The finished surface shall be flat with no projections or depressions greater than 3.2 mm (1/8 in.).
- 5. If required by the agency, place a cover plate on top of the cylinder and leave it in place for the duration of the curing period, or place the lid on the mold to prevent moisture loss.

#### **Procedure – Transporting Specimens**

- Initially cure the specimens for 24 to 48 hours. Transport specimens to the laboratory for final cure. Specimen identity will be noted along with the date and time the specimen was made and the maximum and minimum temperatures registered during the initial cure.
- Protect specimens from jarring, extreme changes in temperature, freezing, or moisture loss during transport.
- Secure cylinders so that the axis is vertical.
- Do not exceed 4 hours transportation time.

#### **Final Curing**

- Upon receiving cylinders at the laboratory, remove the cylinder from the mold and apply the appropriate identification.
- For all specimens (cylinders or beams), final curing must be started within 30 minutes of mold removal. Temperature shall be maintained at 23° ±2°C (73 ±3°F). Free moisture must be present on the surfaces of the specimens during the entire curing period. Curing may be accomplished in a moist room or water tank conforming to AASHTO M 201.
- For cylinders, during the final 3 hours before testing the temperature requirement may be waived, but free moisture must be maintained on specimen surfaces at all times until tested.
- Final curing of beams must include immersion in lime-saturated water for at least 20 hours before testing.

Concrete 14-5

CONCRETEWAQTCFOP AASHTO R 100 (21)

# Report

- On forms approved by the agency
- Pertinent placement information for identification of project, element(s) represented, etc.
- Sample ID
- Date and time molded.
- Test ages.
- Slump, air content, and density.
- Temperature (concrete, initial cure max. and min., and ambient).
- Method of initial curing.
- Other information as required by agency, such as: concrete supplier, truck number, invoice number, water added, etc.

WAQTC

FOP AASHTO R 100 (21)

#### PERFORMANCE EXAM CHECKLIST

# MAKING AND CURING CONCRETE TEST SPECIMENS IN THE FIELD FOP FOR AASHTO R 100 (4 X 8)

| Pa  | rticipant Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Exam Date                   |         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------|
| Re  | cord the symbols "P" for passing or "F" for failing on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | each step of the checklist. |         |
| Pr  | ocedure Element                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Trial 1                     | Trial 2 |
| 1.  | Molds placed on a level, rigid, horizontal surface fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ee of vibration?            |         |
| 2.  | Representative sample selected?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |         |
| 3.  | Making of specimens begun within 15 minutes of s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ampling?                    |         |
| Fir | rst layer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |         |
| 4.  | Concrete placed in the mold, moving a scoop or troperimeter of the mold to evenly distribute the concrete concrete the con |                             |         |
| 5.  | Mold filled approximately half full?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |         |
| 6.  | Layer rodded throughout its depth 25 times with he end of rod, uniformly distributing strokes?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mispherical                 |         |
| 7.  | Sides of the mold tapped 10-15 times after rodding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ?                           |         |
|     | a. With mallet for reusable steel molds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |         |
|     | b. With the open hand for flexible light-gauge mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lds                         |         |
| Se  | cond layer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |         |
| 8.  | Concrete placed in the mold, moving a scoop or troperimeter of the mold to evenly distribute the concrete concrete the con |                             |         |
| 9.  | Mold slightly overfilled on the last layer?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |         |
| 10  | Layer rodded 25 times with hemispherical end of restrokes and penetrating 25 mm (1 in.) into the under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |         |
| 11. | Sides of the mold tapped 10-15 times after rodding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | each layer?                 |         |
|     | a. With mallet for reusable steel molds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |         |
|     | b. With the open hand for flexible light-gauge mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lds                         |         |
| 12  | Concrete struck off with tamping rod, float or trow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | el?                         |         |
| 13  | Specimens covered with non-absorptive, non-react                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ve cap or plate?            |         |
| 14  | Initial curing addressed?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |         |

#### **OVER**

33\_R100\_pr\_4x8\_21\_errata

Concrete 8-13

| CONCRETE                                                                                            | WAQTC          |       | FOP AASHTO F | R 100 (21)           |        |
|-----------------------------------------------------------------------------------------------------|----------------|-------|--------------|----------------------|--------|
| Comments:                                                                                           | First attempt: | Pass_ | Fail         | Second attempt: Pass | Fail   |
|                                                                                                     |                |       |              |                      |        |
| Examiner Signa                                                                                      | iture          |       |              | WAQTC #:             |        |
| This checklist is derived, in part, from copyrighted material printed in ACI CP-1, published by the |                |       |              |                      | ov the |

American Concrete Institute.

33\_R100\_pr\_4x8\_21\_errata

Concrete 8-14

WAQTC

FOP AASHTO R 100 (21)

#### PERFORMANCE EXAM CHECKLIST

# MAKING AND CURING CONCRETE TEST SPECIMENS IN THE FIELD FOP FOR AASHTO R 100 (6 X 12)

| Par | ticip | Exam Date                                                                                                 |                                       |       |         |
|-----|-------|-----------------------------------------------------------------------------------------------------------|---------------------------------------|-------|---------|
| Rec | ord   | the symbols "P" for passing or "F" for failing on ea                                                      | ch step of the checklist.             |       |         |
| Pro | oced  | lure Element                                                                                              | Tri                                   | ial 1 | Trial 2 |
| 1.  | Mo    | olds placed on a level, rigid, horizontal surface free                                                    | e of vibration?                       |       |         |
| 2.  | Re    | presentative sample selected?                                                                             |                                       |       |         |
| 3.  | Ma    | king of specimens begun within 15 minutes of sam                                                          | npling?                               |       |         |
| Fir | st la | nyer                                                                                                      |                                       |       |         |
| 4.  |       | ncrete placed in the mold, moving a scoop or trow<br>imeter of the mold to evenly distribute the concret  |                                       |       |         |
| 5.  | Mo    | old filled approximately one third full?                                                                  |                                       |       |         |
| 6.  | •     | yer rodded throughout its depth 25 times with hem<br>I of rod, uniformly distributing strokes?            | ispherical                            |       |         |
| 7.  | Sid   | les of the mold tapped 10-15 times after rodding ea                                                       | ach layer?                            |       |         |
|     | a.    | With mallet for reusable steel molds                                                                      |                                       |       |         |
|     | b.    | With the open hand for flexible light-gauge mold                                                          | s                                     |       |         |
| Sec | ond   | l layer                                                                                                   |                                       |       |         |
| 8.  |       | ncrete placed in the mold, moving a scoop or trow<br>imeter of the mold to evenly distribute the concret  |                                       |       |         |
| 9.  | Mo    | old filled approximately two thirds full?                                                                 |                                       |       |         |
| 10. | •     | yer rodded 25 times with hemispherical end of rod<br>tributing strokes and penetrating 25 mm (1 in.) into | · · · · · · · · · · · · · · · · · · · |       |         |
| 11. | Sid   | les of the mold tapped 10-15 times after rodding?                                                         |                                       |       |         |
|     | a.    | With mallet for reusable steel molds                                                                      |                                       |       |         |
|     | b.    | With the open hand for flexible light-gauge mold                                                          | s                                     |       |         |
| Th  | ird   | layer                                                                                                     |                                       |       |         |
| 12. |       | ncrete placed in the mold, moving a scoop or trow<br>imeter of the mold to evenly distribute the concret  |                                       |       |         |

#### **OVER**

34\_R100\_pr\_6x12\_21\_errata

Concrete 8-15

| CONCRETE                     | WAQTC                                                        | FOP AAS           | SHTO R 10 | 0 (21) |
|------------------------------|--------------------------------------------------------------|-------------------|-----------|--------|
| Procedure Element            |                                                              |                   | Trial 1   | Trial  |
| 13. Mold slightly overfilled | on the last layer?                                           |                   |           |        |
| -                            | with hemispherical end of ro<br>penetrating 25 mm (1 in.) in | -                 |           |        |
| 15. Sides of the mold tappe  | d 10-15 times after rodding                                  | ?                 |           |        |
| a. With mallet for reu       | sable steel molds                                            |                   |           |        |
| b. With the open hand        | for flexible light-gauge mo                                  | lds               |           |        |
| 16. Concrete struck off with | n tamping rod, straightedge,                                 | float, or trowel? |           |        |
| 17. Specimens covered with   | n non-absorptive, non-reacti                                 | ve cap or plate?  |           |        |
| 18. Initial curing addressed | ?                                                            |                   |           |        |
| Comments: First at           | empt: PassFail                                               | Second attempt: ] | Pass      | Fail   |
|                              |                                                              |                   |           |        |
|                              |                                                              |                   |           |        |
| Examiner Signature           |                                                              |                   |           |        |

American Concrete Institute.

Pub. October 2021

Concrete 8-16

#### SLUMP OF HYDRAULIC CEMENT CONCRETE FOP FOR AASHTO T 119

#### Scope

This procedure provides instructions for determining the slump of hydraulic cement concrete in accordance with AASHTO T 119-18. It is not applicable to non-plastic and non-cohesive concrete.

**Warning**—Fresh Hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.

#### Apparatus

- Mold: conforming to AASHTO T 119
  - Metal: a metal frustum of a cone provided with foot pieces and handles. The mold must be constructed without a seam. The interior of the mold shall be relatively smooth and free from projections such as protruding rivets. The mold shall be free from dents. A mold that clamps to a rigid nonabsorbent base plate is acceptable provided the clamping arrangement is such that it can be fully released without movement of the mold.
  - Non-metal: see AASHTO T 119, Section 5.1.2.
- Tamping rod: 16 mm (5/8 in.) diameter and 400 mm (16 in.) to 600 mm (24 in.) long, having a hemispherical tip the same diameter as the rod. (Hemispherical means "half a sphere"; the tip is rounded like half of a ball.)
- Scoop: a receptacle of appropriate size so that each representative increment of the concrete sample can be placed in the container without spillage.
- Tape measure or ruler with at least 5 mm or 1/8 in. graduations
- Base: flat, rigid, non-absorbent moistened surface on which to set the slump mold

#### Procedure

1. Obtain the sample in accordance with the FOP for WAQTC TM 2. If the concrete mixture contains aggregate retained on the 37.5mm (1½ in.) sieve, the aggregate must be removed in accordance with the Wet Sieving portion of the FOP for WAQTC TM 2.

Begin testing within five minutes of obtaining the sample.

- 2. Dampen the inside of the mold and place it on a dampened, rigid, nonabsorbent surface that is level and firm.
- 3. Stand on both foot pieces in order to hold the mold firmly in place.
- 4. Use the scoop to fill the mold 1/3 full by volume, to a depth of approximately 67 mm (2 5/8 in.) by depth.

Concrete 11-1

WAQTC

5. Consolidate the layer with 25 strokes of the tamping rod, using the rounded end. Distribute the strokes evenly over the entire cross section of the concrete.

For this bottom layer, incline the rod slightly and make approximately half the strokes near the perimeter, and then progress with vertical strokes, spiraling toward the center.

- 6. Use the scoop to fill the mold 2/3 full by volume, to a depth of approximately 155 mm (6 1/8 in.) by depth.
- 7. Consolidate this layer with 25 strokes of the tamping rod, penetrate approximately 25 mm (1 in.) into the bottom layer. Distribute the strokes evenly.
- 8. Use the scoop to fill the mold to overflowing.
- 9. Consolidate this layer with 25 strokes of the tamping rod, penetrate approximately 25 mm (1 in.) into the second layer. Distribute the strokes evenly. If the concrete falls below the top of the mold, stop, add more concrete, and continue rodding for a total of 25 strokes. Keep an excess of concrete above the top of the mold at all times. Distribute strokes evenly as before.
- 10. Strike off the top surface of concrete with a screeding and rolling motion of the tamping rod.
- 11. Clean overflow concrete away from the base of the mold.
- 12. Remove the mold from the concrete by raising it carefully in a vertical direction. Raise the mold 300 mm (12 in.) in  $5 \pm 2$  seconds by a steady upward lift with no lateral or torsional (twisting) motion being imparted to the concrete.

Complete the entire operation from the start of the filling through removal of the mold without interruption within an elapsed time of 2 1/2 minutes. Immediately measure the slump.

- 13. Invert the slump mold and set it next to the specimen.
- 14. Lay the tamping rod across the mold so that it is over the test specimen.
- 15. Measure the distance between the bottom of the rod and the displaced original center of the top of the specimen to the nearest 5 mm (1/4 in.).
- *Note 1:* If a decided falling away or shearing off of concrete from one side or portion of the mass occurs, disregard the test and make a new test on another portion of the sample. If two consecutive tests on a sample of concrete show a falling away or shearing off of a portion of the concrete from the mass of the specimen, the concrete probably lacks the plasticity and cohesiveness necessary for the slump test to be applicable.
- 16. Discard the tested sample.

#### Report

- Results on forms approved by the agency
- Sample ID
- Slump to the nearest 5 mm (1/4 in.).

Concrete 11-2

## PERFORMANCE EXAM CHECKLIST

# SLUMP OF HYDRAULIC CEMENT CONCRETE FOP FOR AASHTO T 119

| Par                                                                                  | ticipant Name E                                                                                                                            | Exam Date               |         |         |  |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|---------|--|
| Record the symbols "P" for passing or "F" for failing on each step of the checklist. |                                                                                                                                            |                         |         |         |  |
| Pr                                                                                   | ocedure Element                                                                                                                            | ,                       | Trial 1 | Trial 2 |  |
| Fir                                                                                  | rst layer                                                                                                                                  |                         |         |         |  |
| 1.                                                                                   | Mold and floor or base plate dampened?                                                                                                     | -                       |         |         |  |
| 2.                                                                                   | Mold held firmly against the base by standing on the t pieces? Mold not allowed to move in any way during                                  |                         |         |         |  |
| 3.                                                                                   | Representative sample scooped into the mold, more perimeter of the mold to evenly distribute the concrete                                  | <b>e</b> 1              |         |         |  |
| 4.                                                                                   | Mold approximately one third (by volume), 67 mm (2                                                                                         | 5/8 in.) deep?          |         |         |  |
| 5.                                                                                   | Layer rodded throughout its depth 25 times with hemi-<br>end of rod, uniformly distributing strokes?                                       | spherical               |         |         |  |
| Sec                                                                                  | cond layer                                                                                                                                 |                         |         |         |  |
| 6.                                                                                   | Representative samples scooped into the mold, moving<br>perimeter of the mold to evenly distribute the concrete                            |                         |         |         |  |
| 7.                                                                                   | Mold filled approximately two thirds (by volume), 153                                                                                      | 5 mm (6 1/8 in.), deep? |         |         |  |
| 8.                                                                                   | Layer rodded throughout its depth 25 times with hemi-<br>uniformly distributing strokes, penetrate approximatel<br>the bottom layer?       |                         |         |         |  |
| Th                                                                                   | ird layer                                                                                                                                  |                         |         |         |  |
| 9.                                                                                   | Representative sample scooped into the mold, moving<br>perimeter of the mold to evenly distribute the concrete                             | 1                       |         |         |  |
| 10.                                                                                  | Mold filled to just over the top of the mold?                                                                                              |                         |         |         |  |
| 11.                                                                                  | Layer rodded throughout its depth 25 times with hemit<br>rod, uniformly distributing strokes, penetrate approxim<br>into the second layer? | 1                       |         |         |  |
| 12.                                                                                  | Excess concrete kept above the mold at all times while                                                                                     | e rodding?              |         |         |  |
| 13.                                                                                  | Concrete struck off level with top of mold using tamping                                                                                   | ng rod?                 |         |         |  |

# OVER

#### T 119

CONCRETE

| Procedure Element                                                                                                                                            | Trial 1 Trial 2 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 14. Concrete removed from around the outside bottom of the mold?                                                                                             |                 |
| 15. Mold lifted upward 300 mm (12 in.) in one smooth motion, without a lateral or twisting motion of the mold, in $5 \pm 2$ seconds?                         |                 |
| 16. Test performed from start of filling through removal of the mold within 2 1/2 minutes?                                                                   |                 |
| 17. Slump immediately measured to the nearest 5 mm ( $1/4$ in.) from the top of the mold to the displaced original center of the top surface of the specimer |                 |
| Comments: First attempt: PassFailSecond attemp                                                                                                               | t: PassFail     |
|                                                                                                                                                              |                 |
|                                                                                                                                                              |                 |
| Examiner SignatureWAQTC #:                                                                                                                                   |                 |

WAQTC

FOP AASHTO T 119 (16)

#### DENSITY (UNIT WEIGHT), YIELD, AND AIR CONTENT (GRAVIMETRIC) OF CONCRETE FOP FOR AASHTO T 121

#### Scope

This method covers the determination of density, or unit weight, of freshly mixed concrete in accordance with AASHTO T 121-19. It also provides formulas for calculating the volume of concrete produced from a mixture of known quantities of component materials and provides a method for calculating cement content and cementitious material content – the mass of cement or cementitious material per unit volume of concrete. A procedure for calculating water/cement ratio is also covered.

**Warning**—Fresh Hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.

#### **Apparatus**

- Measure: May be the bowl portion of the air meter used for determining air content under the FOP for AASHTO T 152. Otherwise, it shall be a cylindrical metal container meeting the requirements of AASHTO T 121. The capacity and dimensions of the measure shall conform to those specified in Table 1.
- Balance or scale: Accurate to within 45 g (0.1 lb) or 0.3 percent of the test load, whichever is greater, at any point within the range of use.
- Tamping rod: 16 mm (5/8 in.) diameter and 400 mm (16 in.) to 600 mm (24 in.) long, having a hemispherical tip the same diameter as the rod. (Hemispherical means "half a sphere"; the tip is rounded like half of a ball.)
- Vibrator: frequency at least 9000 vibrations per minute (150 Hz), at least 19 to 38 mm (3/4 to 1 1/2 in.) in diameter but not greater than 38 mm (1 1/2 in.), and the length of the shaft shall be at least 75 mm (3 in.) longer than the depth of the section being vibrated.
- Scoop: a receptacle of appropriate size so that each representative increment of the concrete sample can be placed in the container without spillage.
- Strike-off plate: A flat rectangular metal plate at least 6 mm (1/4 in.) thick or a glass or acrylic plate at least 12 mm (1/2 in.) thick, with a length and width at least 50 mm (2 in.) greater than the diameter of the measure with which it is to be used. The edges of the plate shall be straight and smooth within tolerance of 1.5 mm (1/16 in.).
- Mallet: With a rubber or rawhide head having a mass of 0.57 ±0.23 kg (1.25 ±0.5 lb) for use with measures of 0.014 m<sup>3</sup> (1/2 ft<sup>3</sup>) or less or having a mass of 1.02 ±0.23 kg (2.25 ±0.5 lb) for use with measures of 0.028 m<sup>3</sup> (1 ft<sup>3</sup>).

| <b>Dimensions of Measures*</b>    |                    |                  |                 |        |                                                   |
|-----------------------------------|--------------------|------------------|-----------------|--------|---------------------------------------------------|
| Capacity                          | Inside<br>Diameter | Inside<br>Height | Minimum T<br>mm |        | Nominal Maximum<br>Size of Coarse<br>Aggregate*** |
| m <sup>3</sup> (ft <sup>3</sup> ) | mm (in.)           | mm (in.)         | Bottom          | Wall   | mm (in.)                                          |
| 0.0071                            | 203 ±2.54          | 213 ±2.54        | 5.1             | 3.0    | 25                                                |
| (1/4)**                           | (8.0 ±0.1)         | (8.4 ±0.1)       | (0.20)          | (0.12) | (1)                                               |
| 0.0142                            | $254 \pm 2.54$     | $279 \pm 2.54$   | 5.1             | 3.0    | 50                                                |
| (1/2)                             | $(10.0 \pm 0.1)$   | (11.0 ±0.1)      | (0.20)          | (0.12) | (2)                                               |
| 0.0283                            | $356 \pm 2.54$     | $284 \pm 2.54$   | 5.1             | 3.0    | 76                                                |
| (1)                               | $(14.0 \pm 0.1)$   | $(11.2 \pm 0.1)$ | (0.20)          | (0.12) | (3)                                               |

Table 1 Dimensions of Measures

WAQTC

\* *Note 1:* The indicated size of measure shall be for aggregates of nominal maximum size equal to or smaller than that listed.

\*\* Measure may be the base of the air meter used in the FOP for AASHTO T 152.

\*\*\* Nominal maximum size: One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

#### **Procedure Selection**

There are two methods of consolidating the concrete – rodding and vibration. If the slump is greater than 75 mm (3 in.), consolidation is by rodding. When the slump is 25 to 75 mm (1 to 3 in.), internal vibration or rodding can be used to consolidate the sample, but the method used must be that required by the agency in order to obtain consistent, comparable results. For concrete with slump less than 25 mm (1 in.), consolidate the sample by internal vibration. Do not consolidate self-consolidating concrete (SCC).

When using measures greater than  $0.0142 \text{ m}^3 (1/2 \text{ ft}^3)$  see AASHTO T 121.

#### Procedure

#### Sampling

1. Obtain the sample in accordance with the FOP for WAQTC TM 2. Testing may be performed in conjunction with the FOP for AASHTO T 152. When doing so, this FOP should be performed before the FOP for AASHTO T 152.

*Note 2:* If the two tests are being performed using the same sample, this test shall begin within five minutes of obtaining the sample.

#### Rodding

- 1. Determine and record the mass of the empty measure.
- 2. Dampen the inside of the measure and empty excess water.

Concrete 12-2

- 3. Use the scoop to fill the measure approximately 1/3 full with concrete. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.
- 4. Consolidate the layer with 25 strokes of the tamping rod, using the rounded end. Distribute the strokes evenly over the entire cross section of the concrete. Rod throughout its depth without hitting the bottom too hard.
- 5. Tap around the perimeter of the measure smartly 10 to 15 times with the mallet to close voids and release trapped air.
- 6. Add the second layer, filling the measure about 2/3 full. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.
- 7. Consolidate this layer with 25 strokes of the tamping rod, penetrating about 25 mm (1 in.) into the bottom layer.
- 8. Tap around the perimeter of the measure smartly 10 to 15 times with the mallet.
- 9. Add the final layer, slightly overfilling the measure. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.
- 10. Consolidate this layer with 25 strokes of the tamping rod, penetrating about 25 mm (1 in.) into the second layer.
- 11. Tap around the perimeter of the measure smartly 10 to 15 times with the mallet.
- 12. After consolidation, the measure should be slightly over full, about 3 mm (1/8 in.) above the rim. If there is a great excess of concrete, remove a portion with the scoop. If the measure is under full, add a small quantity. This adjustment may be done only after consolidating the final layer and before striking off the surface of the concrete.
- 13. Continue with 'Strike-off and Determining Mass.'

#### **Internal Vibration**

- 1. Determine and record the mass of the empty measure.
- 2. Dampen the inside of the measure and empty excess water.
- 3. Use the scoop to fill the measure approximately 1/2 full with concrete. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.
- 4. Insert the vibrator at three different points in each layer. Do not let the vibrator touch the bottom or side of the measure. Continue vibration only long enough to achieve proper consolidation of the concrete. Over vibration may cause segregation and loss of appreciable quantities of intentionally entrained air.
- 5. Tap around the perimeter of the measure smartly 10 to 15 times with the mallet.
- 6. Slightly overfill the measure. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.
- 7. Insert the vibrator at three different points, penetrating the first layer approximately 25 mm (1 in.). Do not let the vibrator touch the side of the measure.
- 8. Tap around the perimeter of the measure smartly 10 to 15 times with the mallet.

Concrete 12-3

WAQTC

- 9. After consolidation, the measure should be slightly over full, about 3 mm (1/8 in.) above the rim. If there is a great excess of concrete, remove a portion with the scoop. If the measure is under full, add a small quantity. This adjustment may be done only after consolidating the final layer and before striking off the surface of the concrete.
- 10. Continue with 'Strike-off and Determining Mass.'

#### **Self-Consolidating Concrete**

- 1. Determine and record the mass of the empty measure.
- 2. Dampen the inside of the measure and empty excess water.
- 3. Use the scoop to slightly overfill the measure. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.
- 5. Continue with 'Strike-off and Determining Mass.'

#### Strike-off and Determining Mass

- 1. Press the strike-off plate flat against the top surface, covering approximately 2/3 of the measure.
- 2. Withdraw the strike-off plate with a sawing motion to finish the 2/3 originally covered.
- 3. Cover the original 2/3 again with the plate; finishing the remaining 1/3 with a sawing motion (do not lift the plate; continue the sawing motion until the plate has cleared the surface of the measure).
- 4. Final finishing may be accomplished with several strokes with the inclined edge of the strike-off plate. The surface should be smooth and free of voids.
- 5. Clean off all excess concrete from the exterior of the measure including the rim.
- 6. Determine and record the mass of the measure and the concrete.
- 7. If the air content of the concrete is to be determined, ensure the rim (flange) is clean and proceed to 'Strike-off and Air Content' Step 3 of the FOP for AASHTO T 152.

39\_T121\_short\_20

Concrete 12-4

FOP AASHTO T 121 (20)

#### Calculations

Mass of concrete in the measure

concrete mass = 
$$M_c - M_m$$

Where:

 $\begin{array}{rcl} Concrete \mbox{ mass } &=& \mbox{ mass of concrete in measure} \\ M_c &=& \mbox{ mass of measure and concrete} \\ M_m &=& \mbox{ mass of measure} \end{array}$ 

Density

$$\rho = \frac{concrete\ mass}{V_m}$$

Where:

 $\rho$  = density of the concrete mix  $V_m$  = volume of measure (Annex A)

Yield m<sup>3</sup>

$$Y_{m^3} = \frac{W}{\rho}$$

Where:

| $Y_m^3$ | = | yield (m <sup>3</sup> of the batch of concrete) |
|---------|---|-------------------------------------------------|
| W       | = | total mass of the batch of concrete             |

Concrete 12-5

WAQTC

Yield yd<sup>3</sup>

$$Y_{ft^3} = \frac{W}{\rho}$$
  $Y_{yd^3} = \frac{Y_{ft^3}}{27ft^3/yd^3}$ 

Where:

| $Y_{\rm ft}{}^3$ | = | yield (ft <sup>3</sup> of the batch of concrete) |
|------------------|---|--------------------------------------------------|
| $Y_{yd}{}^3 \\$  | = | yield (yd <sup>3</sup> of the batch of concrete) |
| W                | = | total mass of the batch of concrete              |
| ρ                | = | density of the concrete mix                      |

Note 5: The total mass, W, includes the masses of the cement, water, and aggregates in the concrete.

#### **Cement Content**

$$N = \frac{N_t}{Y}$$

Where:

*Note 6:* Specifications may require Portland Cement content and supplementary cementitious materials content.

#### Water Content

The mass of water in a batch of concrete is the sum of:

- water added at batch plant
- water added in transit
- water added at jobsite
- free water on coarse aggregate\*
- free water on fine aggregate\*
- liquid admixtures (if required by the agency)
- \*Mass of free water on aggregate

This information is obtained from concrete batch tickets collected from the driver. Use the Table 2 to convert liquid measures.

| j $j$ $1121$ short $20$ | 39 | T121 | short | 20 |
|-------------------------|----|------|-------|----|
|-------------------------|----|------|-------|----|

Concrete 12-6

#### FOP AASHTO T 121 (20)

| Liquid Conversion Factors |                 |             |  |  |  |
|---------------------------|-----------------|-------------|--|--|--|
| To Convert From           | То              | Multiply By |  |  |  |
| Liters, L                 | Kilograms, kg   | 1.0         |  |  |  |
| Gallons, gal              | Kilograms, kg   | 3.785       |  |  |  |
| Gallons, gal              | Pounds, lb      | 8.34        |  |  |  |
| Milliliters, mL           | Kilograms, kg   | 0.001       |  |  |  |
| Ounces, oz                | Milliliters, mL | 28.4        |  |  |  |
| Ounces, oz                | Kilograms, kg   | 0.0284      |  |  |  |
| Ounces, oz                | Pounds, lb      | 0.0625      |  |  |  |
| Pounds, lb                | Kilograms, kg   | 0.4536      |  |  |  |

Table 2

#### Mass of free water on aggregate

 $Free Water Mass = CA \text{ or } FC \text{ } Aggregate - \frac{CA \text{ } or \text{ } FC \text{ } Aggregate}{1 + (Free Water Percentage/100)}$ 

Where:

| Free Water Mass       | = | on coarse or fine aggregate                     |
|-----------------------|---|-------------------------------------------------|
| FC or CA Aggregate    | = | mass of coarse or fine aggregate                |
| Free Water Percentage | = | percent of moisture of coarse or fine aggregate |

#### Water/Cement Ratio

Where:

| Water Content | = | total mass of water in the batch     |
|---------------|---|--------------------------------------|
| С             | = | total mass of cementitious materials |

39\_T121\_short\_20

Concrete 12-7

WAQTC

# Example

| Mass of concrete in measure (M <sub>m</sub> ) | 16.290 kg (36.06 lb)                         |
|-----------------------------------------------|----------------------------------------------|
| Volume of measure (V <sub>m</sub> )           | $0.007079 \text{ m}^3 (0.2494 \text{ ft}^3)$ |

# From batch ticket:

| Yards batched        | $4 \text{ yd}^3$  |
|----------------------|-------------------|
| Cement               | 950 kg (2094 lb)  |
| Fly ash              | 180 kg (397 lb)   |
| Coarse aggregate     | 3313 kg (7305 lb) |
| Fine aggregate       | 2339 kg (5156 lb) |
| Water added at plant | 295 L (78 gal)    |

# Other

| Water added in transit                  | 0                   |
|-----------------------------------------|---------------------|
| Water added at jobsite                  | 38 L (10 gal)       |
| Total mass of the batch of concrete (W) | 7115 kg (15,686 lb) |
| Moisture content of coarse aggregate    | 1.7%                |
| Moisture content of coarse aggregate    | 5.9%                |

39\_T121\_short\_20

Density

$$\rho = \frac{concrete\ mass}{V_m}$$

$$\rho = \frac{16.920 \ kg}{0.007079 \ m^3} = 2390 \ kg/m^3 \ \rho = \frac{36.06 \ lb}{0.2494 \ ft^3} = 144.6 \ lb/ft^3$$

Given:

concrete mass = 
$$16.920 \text{ kg} (36.06 \text{ lb})$$
  
 $V_m = 0.007079 \text{ m}^3 (0.2494 \text{ ft}^3) (\text{Annex A})$ 

Yield m<sup>3</sup>

$$Y_{m^3} = \frac{W}{\rho}$$

$$Y_{m^3} = \frac{7115 \ kg}{2390 \ kg/m^3} = 2.98 \ m^3$$

Given:

Total mass of the batch of concrete (W), kg = 7115 kg

39\_T121\_short\_20

Yield yd<sup>3</sup>

$$Y_{ft^3} = \frac{W}{\rho}$$
  $Y_{yd^3} = \frac{Y_{ft^3}}{27ft^3/yd^3}$ 

$$Y_{ft^3} = \frac{15,686 \, lb}{144.6 \, lb/ft^3} = 108.48 \, ft^3 \qquad Y_{yd^3} = \frac{108.48 \, ft^3}{27 \, ft^3/yd^3} = 4.02 \, yd^3$$

Given:

Total mass of the batch of concrete (W), lb = 15,686 lb

**Cement Content** 

$$N = \frac{N_t}{Y}$$

$$N = \frac{950 \ kg + 180 \ kg}{2.98 \ m^3} = 379 \ kg/m^3 \ N = \frac{2094 \ lb + 397 \ lb}{4.02 \ yd^3} = 620 \ lb/yd^3$$

Given:

$$N_t (cement) = 950 \text{ kg} (2094 \text{ lb})$$
  
 $N_t (flyash) = 180 \text{ kg} (397 \text{ lb})$   
 $Y = Y_m^3 \text{ or } Y_{yd}^3$ 

Note 6: Specifications may require Portland Cement content and supplementary cementitious materials content.

39\_T121\_short\_20

Concrete 12-10

# WAQTC

FOP AASHTO T 121 (20)

Free water

Free Water Mass = CA or FC Aggregate 
$$-\frac{CA \text{ or FC Aggregate}}{1 + (Free Water Percentage/100)}$$

CA Free Water = 
$$3313 \ kg - \frac{3313 \ kg}{1 + (1.7/100)} = 55 \ kg$$

$$CA Free Water = 7305 \ lb - \frac{7305 \ lb}{1 + (1.7/100)} = 122 \ lb$$

FA Free Water = 
$$2339 kg - \frac{2339 kg}{1 + (5.9/100)} = 130 kg$$

FA Free Water = 
$$5156 \ lb - \frac{5156 \ lb}{1 + (5.9/100)} = 287 \ lb$$

Given:

CA aggregate = 3313 kg (7305 lb)FC aggregate = 2339 kg (5156 lb)CA moisture content = 1.7%FC moisture content = 5.9%

39\_T121\_short\_20

Concrete 12-11

#### WAQTC

#### Water Content

Total of all water in the mix.

Water Content =  $[(78 \ gal + 10 \ gal) * 3.785 \ kg/gal] + 55 \ kg + 130 \ kg = 518 \ kg$ 

Water Content = [(78 gal + 10 gal) \* 8.34 lb/gal] + 122 lb + 287 lb = 1143 lb

Given:

| Water added at plant       | = | 295 L (78 gal) |
|----------------------------|---|----------------|
| Water added at the jobsite | = | 38 L (10 gal)  |

#### Water/ Cement Ratio

$$W/C = \frac{518 \, kg}{950 \, kg + 180 \, kg} = 0.458 \quad W/C = \frac{1143 \, lb}{2094 \, lb + 397 \, lb} = 0.459$$

#### Report 0.46

#### Report

- Results on forms approved by the agency
- Sample ID
- Density (unit weight) to the nearest 1 kg/m<sup>3</sup> (0.1 lb/ft<sup>3</sup>)
- Yield to the nearest 0.01 m<sup>3</sup> (0.01 yd<sup>3</sup>)
- Cement content to the nearest 1 kg/m<sup>3</sup> (1 lb/yd<sup>3</sup>)
- Cementitious material content to the nearest 1 kg/m<sup>3</sup> (1 lb/yd<sup>3</sup>)
- Water/Cement ratio to the nearest 0.01

39\_T121\_short\_20

Concrete 12-12

## ANNEX A – STANDARDIZATION OF MEASURE

#### (Mandatory Information)

Standardization is a critical step to ensure accurate test results when using this apparatus. Failure to perform the standardization procedures as described herein will produce inaccurate or unreliable test results.

#### Apparatus

- Listed in the FOP for AASHTO T 121
  - Measure
  - Balance or scale
  - Strike-off plate
- Thermometer: Standardized liquid-in-glass, or electronic digital total immersion type, accurate to 0.5°C (1°F)

#### Procedure

- 1. Determine the mass of the dry measure and strike-off plate.
- 2. Fill the measure with water at a temperature between 16°C and 29°C (60°F and 85°F) and cover with the strike-off plate in such a way as to eliminate bubbles and excess water.
- 3. Wipe the outside of the measure and cover plate dry, being careful not to lose any water from the measure.
- 4. Determine the mass of the measure, strike-off plate, and water in the measure.
- 5. Determine the mass of the water in the measure by subtracting the mass in Step 1 from the mass in Step 4.
- 6. Measure the temperature of the water and determine its density from Table A1, interpolating as necessary.
- 7. Calculate the volume of the measure, V<sub>m</sub>, by dividing the mass of the water in the measure by the density of the water at the measured temperature.

WAQTC

# Calculations

$$V_m = \frac{M}{\rho_w}$$
 Where:

 $V_m$  = volume of the mold M = mass of water in the mold  $\rho_w$  = density of water at the measured temperature

# Example

| Mass of water in Measure                       | = | 7.062 kg (15.53 lb)                                   |
|------------------------------------------------|---|-------------------------------------------------------|
| Density of water at 23°C (73.4°F) ( $\rho_w$ ) | = | 997.54 kg/m <sup>3</sup> (62.274 lb/ft <sup>3</sup> ) |

$$V_m = \frac{7.062 \ kg}{997.54 \ kg/m^3} = 0.007079 \ m^3 \qquad V_m = \frac{15.53 \ lb}{62.274 \ lb/ft^3} = 0.2494 \ ft^3$$

39\_T121\_short\_20

| Unit Mass of Water<br>15°C to 30°C |        |                   |                       |      |        |                   |                       |
|------------------------------------|--------|-------------------|-----------------------|------|--------|-------------------|-----------------------|
| °C                                 | (°F)   | kg/m <sup>3</sup> | (lb/ft <sup>3</sup> ) | °C   | (°F)   | kg/m <sup>3</sup> | (lb/ft <sup>3</sup> ) |
| 15                                 | (59.0) | 999.10            | (62.372)              | 23   | (73.4) | 997.54            | (62.274)              |
| 15.6                               | (60.0) | 999.01            | (62.366)              | 23.9 | (75.0) | 997.32            | (62.261)              |
| 16                                 | (60.8) | 998.94            | (62.361)              | 24   | (75.2) | 997.29            | (62.259)              |
| 17                                 | (62.6) | 998.77            | (62.350)              | 25   | (77.0) | 997.03            | (62.243)              |
| 18                                 | (64.4) | 998.60            | (62.340)              | 26   | (78.8) | 996.77            | (62.227)              |
| 18.3                               | (65.0) | 998.54            | (62.336)              | 26.7 | (80.0) | 996.59            | (62.216)              |
| 19                                 | (66.2) | 998.40            | (62.328)              | 27   | (80.6) | 996.50            | (62.209)              |
| 20                                 | (68.0) | 998.20            | (62.315)              | 28   | (82.4) | 996.23            | (62.192)              |
| 21                                 | (69.8) | 997.99            | (62.302)              | 29   | (84.2) | 995.95            | (62.175)              |
| 21.1                               | (70.0) | 997.97            | (62.301)              | 29.4 | (85.0) | 995.83            | (62.166)              |
| 22                                 | (71.6) | 997.77            | (62.288)              | 30   | (86.0) | 995.65            | (62.156)              |

# Table A1

# Report

- Measure ID •
- Date Standardized •
- Temperature of the water •
- Volume, V<sub>m</sub>, of the measure •

39\_T121\_short\_20

Concrete 12-15

WAQTC

39\_T121\_short\_20

Concrete 12-16

# WAQTC

#### PERFORMANCE EXAM CHECKLIST

#### DENSITY (UNIT WEIGHT), YIELD, AND AIR CONTENT (GRAVIMETRIC) OF CONCRETE FOP FOR AASHTO T 121

| Par | ticipant Name Exam Date                                                                                                                                                     |         |         |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|
| Rec | cord the symbols "P" for passing or "F" for failing on each step of the checklist.                                                                                          |         |         |
| Pr  | ocedure Element                                                                                                                                                             | Trial 1 | Trial 2 |
| 1.  | Mass and volume of empty measure determined?                                                                                                                                |         |         |
| Fir | st Layer                                                                                                                                                                    |         |         |
| 2.  | Dampened measure filled approximately one third full, moving a scoop<br>around the perimeter of the measure to evenly distribute the concrete<br>as discharged?             |         |         |
| 3.  | Layer rodded throughout its depth 25 times, without forcibly<br>striking the bottom of the measure, with hemispherical end of rod,<br>uniformly distributing strokes?       |         |         |
| 4.  | Perimeter of the measure tapped 10 to 15 times with the mallet after rodding?                                                                                               |         |         |
| Sec | cond layer                                                                                                                                                                  |         |         |
| 5.  | Measure filled approximately two thirds full, moving a scoop around<br>the perimeter of the measure to evenly distribute the concrete as discharged?                        |         |         |
| 6.  | Layer rodded throughout its depth, just penetrating the previous layer (approximately 25 mm (1 in.) 25 times with hemispherical end of rod, uniformly distributing strokes? |         |         |
| 7.  | Perimeter of the measure tapped 10 to 15 times with the mallet after rodding?                                                                                               |         |         |
| Th  | ird layer                                                                                                                                                                   |         |         |
| 8.  | Measure slightly overfilled, moving a scoop around the perimeter of the measure to evenly distribute the concrete as discharged?                                            |         |         |
| 9.  | Layer rodded throughout its depth, just penetrating the previous layer (approximately 25 mm (1 in.) 25 times with hemispherical end of rod, uniformly distributing strokes? |         |         |
| 10. | Perimeter of the measure tapped 10 to 15 times with the mallet after rodding each layer?                                                                                    |         |         |
| 11. | Any excess concrete removed using a trowel or a scoop, or<br>small quantity of concrete added to correct a deficiency, after<br>consolidation of final layer?               |         |         |

#### OVER

Concrete 6-21

| CONCRETE                                   | WAQTC                                                                                            | FOP AASH             | ΙΤΟ Τ | 121 (17) |
|--------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------|-------|----------|
| Procedure Element                          |                                                                                                  | Tr                   | ial 1 | Trial 2  |
|                                            | d flat on the measure covering appro<br>en sawing action used to withdraw th<br>covered surface? |                      |       |          |
|                                            | d flat on the measure covering appro<br>en sawing action used to advance the<br>rface?           |                      |       |          |
| 14. Strike off completed a smooth surface? | using the inclined edge of the plate c                                                           | ereating             |       |          |
| 15. All excess concrete c determined?      | leaned off and mass of full measure                                                              |                      |       |          |
| 16. Concrete mass calcul                   | ated?                                                                                            |                      |       |          |
| 17. Density calculated co                  | prrectly?                                                                                        |                      |       |          |
| Comments: First                            | attempt: PassFail                                                                                | Second attempt: Pass | F     | Fail     |
|                                            |                                                                                                  |                      |       |          |
|                                            |                                                                                                  |                      |       |          |
| Examiner Signature                         | W                                                                                                | AQTC #:              |       |          |

This checklist is derived, in part, from copyrighted material printed in ACI CP-1, published by the American Concrete Institute.

Concrete 6-22



# WSDOT Test Method T 123

# Method of Test for Bark Mulch

#### 1. Scope

a. This method covers a procedure for determining the sieve analysis and material finer than No. 4 sieve using a loose volume bucket.

#### 2. Equipment

- a. A mechanical sieve shaker.
- b. Sieves Sieves conforming to the requirements of ASTM E11. Breaker sieves may be used.
- c. Volume Bucket A container calibrated in 1 gal. increments from 1 to 5 gal. A 5-gal. bucket may be used when calibrated as follows:

On a level surface calibrate the container by gradually filling it with water in 1 gal. increments. Mark the inner wall of the container after the addition of each gallon

#### 3. Procedure

- a. Air dry (140°F max) the sample for 15 hours,  $\pm$  4 hours.
- b. Reduce the sample to testing size per the FOP for AASHTO R 76.
- c. Place the sample in the volume bucket and record the volume as the total volume.
- d. Shake the sample over the 2 in and No. 4 sieves. Using breaker sieves inserted between the two specified sieves so the No. 4 sieve will not be **overloaded**. Use caution to avoid over sieving as the wood material breaks down.
- e. The material retained on the 2 in sieve is measured in the volume bucket and recorded.
- f. The material on the breaker sieves is added to the material retained on the No. 4 sieve and the volume measured in the volume bucket and recorded.
- g. The percent passing is calculated as follows:

100 - <u>(Volume on sieve × 100)</u> Total Volume = % passing

# Performance Exam Checklist WSDOT T 123 Method of Test for Bark Mulch

| Parti | cipant Name Exam Date                                                                                                                 |     |    |
|-------|---------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| Proc  | edure Element                                                                                                                         | Yes | No |
| 1.    | The tester has a copy of the current procedure on hand?                                                                               |     |    |
| 2.    | All equipment is functioning according to the test procedure, and if required, has the current calibration/verification tags present? |     |    |
| 3.    | Bark mulch sample air dried for 15 ± 4 hrs (@ 140°F max)?                                                                             |     |    |
| 4.    | Five (5) gallon bucket calibrated in 1 gal. increments?                                                                               |     |    |
| 5.    | Sample reduced according to FOP for AASHTO R 76 and placed in calibrated bucket?                                                      |     |    |
| 6.    | Volume of sample in bucket recorded as total volume?                                                                                  |     |    |
| 7.    | Sample screened in the shaker through 2 in screen, breaker screens and No. 4 screen?                                                  |     |    |
| 8.    | Do not over shake to prevent degrading of sample?                                                                                     |     |    |
| 9.    | Remove 2 in screen and damp material in calibrated bucket and record volume as volume on 2 in screen?                                 |     |    |
| 10.   | Place all breaker screen material down to No. 4 screen in bucket and record volume as volume on No. 4 screen?                         |     |    |
| 11.   | All calculations performed correctly?                                                                                                 |     |    |
| 12.   | Report results?                                                                                                                       |     |    |
| First | Attempt: Pass Fail Second Attempt: Pass Fail                                                                                          |     |    |
| Signa | ature of Examiner                                                                                                                     |     |    |

Comments:

## AIR CONTENT OF FRESHLY MIXED CONCRETE BY THE PRESSURE METHOD FOP FOR AASHTO T 152

#### Scope

This procedure covers determination of the air content in freshly mixed Portland Cement Concrete containing dense aggregates in accordance with AASHTO T 152-19, Type B meter. It is not for use with lightweight or highly porous aggregates. This procedure includes standardization of the Type B air meter gauge, Annex A.

**Warning**—Fresh Hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.

#### Apparatus

- Air meter: Type B, as described in AASHTO T 152
- Balance or scale: Accurate to 0.3 percent of the test load at any point within the range of use (for Method 1 standardization only)
- Tamping rod: 16 mm (5/8 in.) diameter and 400 mm (16 in.) to 600 mm (24 in.) long, having a hemispherical tip the same diameter as the rod. (Hemispherical means "half a sphere"; the tip is rounded like half of a ball.)
- Vibrator: frequency at least 9000 vibrations per minute (150 Hz), at least 19 to 38 mm (3/4 to 1 1/2 in.) in diameter but not greater than 38 mm (1 1/2 in.), and the length of the shaft shall be at least 75 mm (3 in.) than the depth of the section being vibrated.
- Scoop: a receptacle of appropriate size so that each representative increment of the concrete sample can be placed in the container without spillage.
- Container for water: rubber syringe (may also be a squeeze bottle)
- Strike-off bar: Approximately 300 mm x 22 mm x 3 mm (12 in. x 3/4 in. x 1/8 in.)
- Strike-off plate: A flat rectangular metal plate at least 6 mm (1/4 in.) thick or a glass or acrylic plate at least 12 mm (1/2 in.) thick, with a length and width at least 50 mm (2 in.) greater than the diameter of the measure with which it is to be used. The edges of the plate shall be straight and smooth within tolerance of 1.5 mm (1/16 in.).

*Note 1:* Use either the strike-off bar or strike-off plate; both are not required.

• Mallet: With a rubber or rawhide head having a mass of  $0.57 \pm 0.23$  kg ( $1.25 \pm 0.5$  lb)

40\_T152\_short\_20

Concrete 13-1

WAQTC

#### **Procedure Selection**

There are two methods of consolidating the concrete – rodding and vibration. If the slump is greater than 75 mm (3 in.), consolidation is by rodding. When the slump is 25 to 75 mm (1 to 3 in.), internal vibration or rodding can be used to consolidate the sample, but the method used must be that required by the agency in order to obtain consistent, comparable results. For concrete with slumps less than 25 mm (1 in.), consolidate the sample by internal vibration. Do not consolidate self-consolidating concrete (SCC).

#### Procedure

#### Sampling

1. Obtain the sample in accordance with the FOP for WAQTC TM 2. If the concrete mixture contains aggregate retained on the 37.5mm (1½ in.) sieve, the aggregate must be removed in accordance with the Wet Sieving portion of the FOP for WAQTC TM 2.

Testing shall begin within five minutes of obtaining the sample.

#### Rodding

- 1. Dampen the inside of the air meter measure and place on a firm level surface.
- 2. Use the scoop to fill the measure approximately 1/3 full with concrete. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.
- 3. Consolidate the layer with 25 strokes of the tamping rod, using the rounded end. Distribute the strokes evenly over the entire cross section of the concrete. Rod throughout its depth without hitting the bottom too hard.
- 4. Tap around the perimeter of the measure smartly 10 to 15 times with the mallet to close voids and release trapped air.
- 5. Add the second layer, filling the measure about 2/3 full. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.
- 6. Consolidate this layer with 25 strokes of the tamping rod, penetrating about 25 mm (1 in.) into the bottom layer.
- 7. Tap around the perimeter of the measure smartly 10 to 15 times with the mallet.
- 8. Add the final layer, slightly overfilling the measure. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.
- 9. Consolidate this layer with 25 strokes of the tamping rod, penetrating about 25 mm (1 in.) into the second layer.
- 10. Tap around the perimeter of the measure smartly 10 to 15 times with the mallet.
- 11. After consolidation, the measure should be slightly over full, about 3 mm (1/8 in.) above the rim. If there is a great excess of concrete, remove a portion with the trowel or scoop. If the measure is under full, add a small quantity. This adjustment may be done only after consolidating the final layer and before striking off the surface of the concrete.
- 12. Continue with 'Strike-off and Air Content.'

```
40 T152 short 20
```

Concrete 13-2

#### **Internal Vibration**

- 1. Dampen the inside of the air meter measure and place on a firm level surface.
- 2. Use the scoop to fill the measure approximately 1/2 full with concrete. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.
- 3. Insert the vibrator at three different points. Do not let the vibrator touch the bottom or side of the measure. Remove the vibrator slowly, so that no air pockets are left in the material. Continue vibration only long enough to achieve proper consolidation of the concrete. Over vibration may cause segregation and loss of appreciable quantities of intentionally entrained air.
- 4. Tap around the perimeter of the measure smartly 10 to 15 times with the mallet.
- 5. Use the scoop to fill the measure a bit over full. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.
- 6. Insert the vibrator at three different points, penetrating the first layer approximately 25 mm (1 in.). Do not let the vibrator touch the side of the measure. Remove the vibrator slowly, so that no air pockets are left in the material. Continue vibration only long enough to achieve proper consolidation of the concrete. Over vibration may cause segregation and loss of appreciable quantities of intentionally entrained air.
- 7. Tap around the perimeter of the measure smartly 10 to 15 times with the mallet.
- 8. Continue with 'Strike-off and Air Content.'.

#### **Self-Consolidating Concrete**

- 1. Dampen the inside of the air meter measure and place on a firm level surface.
- 2. Use the scoop to slightly overfill the measure. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.
- 3. Continue with 'Strike-off and Air Content.'

#### Strike-Off and Air Content

- 1. Strike off the surface of the concrete and finish it smoothly with a sawing action of the strike-off bar or plate, using great care to leave the measure just full. The surface should be smooth and free of voids.
- 2. Clean the top flange of the measure to ensure a proper seal.
- 3. Moisten the inside of the cover and check to see that both petcocks are open, and the main air valve is closed.
- 4. Clamp the cover on the measure.
- 5. Inject water through a petcock on the cover until water emerges from the petcock on the other side.

40\_T152\_short\_20

Concrete 13-3

WAQTC

- 6. Incline slightly and gently rock the air meter until no air bubbles appear to be coming out of the second petcock. The petcock expelling water should be higher than the petcock where water is being injected. Return the air meter to a level position and verify that water is present in both petcocks.
- 7. Close the air bleeder valve and pump air into the air chamber until the needle goes past the initial pressure determined for the gauge. Allow a few seconds for the compressed air to cool.
- 8. Tap the gauge gently with one hand while slowly opening the air bleeder valve until the needle rests on the initial pressure. Close the air bleeder valve.
- 9. Close both petcocks.
- 10. Open the main air valve.
- 11. Tap the side of the measure smartly with the mallet.
- 12. With the main air valve open, lightly tap the gauge to settle the needle, and then read the air content to the nearest 0.1 percent.
- 13. Release or close the main air valve.
- 14. Open both petcocks to release pressure, remove the concrete, and thoroughly clean the cover and measure with clean water.
- 15. Open the main air valve to relieve the pressure in the air chamber.

## Report

- On forms approved by the agency
- Sample ID
- Percent of air to the nearest 0.1 percent.
- Some agencies require an aggregate correction factor in order to determine total percent of entrained air.

Total % entrained air = Gauge reading – aggregate correction factor from mix design (See AASHTO T 152 for more information.)

# ANNEX A STANDARDIZATION OF AIR METER GAUGE

(Mandatory Information)

Standardization is a critical step to ensure accurate test results when using this apparatus. Failure to perform the standardization procedures as described below will produce inaccurate or unreliable test results.

Standardization shall be performed at a minimum of once every three months. Record the date of the standardization, the standardization results, and the name of the technician performing the standardization in the logbook kept with each air meter.

There are two methods for standardizing the air meter, mass or volume, both are covered below.

- 1. Screw the short piece of straight tubing into the threaded petcock hole on the underside of the cover.
- 2. Determine and record the mass of the dry, empty air meter measure and cover assembly (mass method only).
- 3. Fill the measure nearly full with water.
- 4. Clamp the cover on the measure with the tube extending down into the water. Mark the petcock with the tube attached for future reference.
- 5. Add water through the petcock having the pipe extension below until all air is forced out the other petcock. Rock the meter slightly until all air is expelled through the petcock.
- 6. Wipe off the air meter measure and cover assembly; determine and record the mass of the filled unit (mass method only).
- 7. Pump up the air pressure to a little beyond the predetermined initial pressure indicated on the gauge. Wait a few seconds for the compressed air to cool, and then stabilize the gauge hand at the proper initial pressure by pumping up or relieving pressure, as needed.
- 8. Close both petcocks and immediately open the main air valve exhausting air into the measure. Wait a few seconds until the meter needle stabilizes. The gauge should now read 0 percent. If two or more tests show a consistent variation from 0 percent in the result, change the initial pressure line to compensate for the variation, and use the newly established initial pressure line for subsequent tests.
- 9. Determine which petcock has the straight tube attached to it. Attach the curved tube to external portion of the same petcock.
- 10. Pump air into the air chamber. Open the petcock with the curved tube attached to it. Open the main air valve for short periods of time until 5 percent of water by mass or volume has been removed from the air meter. Remember to open both petcocks to release the pressure in the measure and drain the water in the curved tube back into the measure. To determine the mass of the water to be removed, subtract the mass found in Step 2 from the mass found in Step 6. Multiply this value by 0.05. This is the mass of the water that must be removed. To remove 5 percent by volume, remove water until the external standardization vessel is level full.

40\_T152\_short\_20

Concrete 13-5

WAQTC

- *Note A1:* Many air meters are supplied with a standardization vessel(s) of known volume that are used for this purpose. Standardization vessel must be protected from crushing or denting. If an external standardization vessel is used, confirm what percentage volume it represents for the air meter being used. Vessels commonly represent 5 percent volume, but they are for specific size meters. This should be confirmed by mass.
- 11. Remove the curved tube. Pump up the air pressure to a little beyond the predetermined initial pressure indicated on the gauge. Wait a few seconds for the compressed air to cool, and then stabilize the gauge hand at the proper initial pressure by pumping up or relieving pressure, as needed.
- 12. Close both petcocks and immediately open the main air valve exhausting air into the measure. Wait a few seconds until the meter needle is stabilized. The gauge should now read  $5.0 \pm 0.1$  percent. If the gauge is outside that range, the meter needs adjustment. The adjustment could involve adjusting the starting point so that the gauge reads  $5.0 \pm 0.1$  percent when this standardization is run or could involve moving the gauge needle to read 5.0 percent. Any adjustment should comply with the manufacturer's recommendations.
- 13. When the gauge hand reads correctly at 5.0 percent, additional water may be withdrawn in the same manner to check the results at other values such as 10 percent or 15 percent.
- 14. If an internal standardization vessel is used, follow Steps 1 through 8 to set initial reading.
- 15. Release pressure from the measure and remove cover. Place the internal standardization vessel into the measure. This will displace 5 percent of the water in the measure. (See AASHTO T 152 for more information on internal standardization vessels.)
- 16. Place the cover back on the measure and add water through the petcock until all the air has been expelled.
- 17. Pump up the air pressure chamber to the initial pressure. Wait a few seconds for the compressed air to cool, and then stabilize the gauge hand at the proper initial pressure by pumping up or relieving pressure, as needed.
- 18. Close both petcocks and immediately open the main air valve exhausting air into the measure. Wait a few seconds until the meter needle stabilizes. The gauge should now read 5 percent.
- 19. Remove the extension tubing from threaded petcock hole in the underside of the cover before starting the test procedure.

#### Report

- Air meter ID
- Date standardized
- Initial pressure (IP)

# PERFORMANCE EXAM CHECKLIST

# AIR CONTENT OF FRESHLY MIXED CONCRETE BY THE PRESSURE METHOD FOP FOR AASHTO T 152

| Par | rticipant Name Exam Date                                                                                                                                                     |       |         |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|
| Ree | cord the symbols "P" for passing or "F" for failing on each step of the check                                                                                                | list. |         |
| Pr  | Procedure Element                                                                                                                                                            |       | Trial 2 |
| 1.  | Representative sample selected?                                                                                                                                              |       |         |
| Fir | rst Layer                                                                                                                                                                    |       |         |
| 2.  | Dampened measure filled approximately one third full, moving a scoop a<br>the perimeter of the measure to evenly distribute the concrete as discharge                        |       |         |
| 3.  | Layer rodded throughout its depth 25 times, without forcibly<br>striking the bottom of the measure, with hemispherical end of rod,<br>uniformly distributing strokes?        |       |         |
| 4.  | Perimeter of the measure tapped 10 to 15 times with the mallet after rode                                                                                                    | ding? |         |
| Sec | cond layer                                                                                                                                                                   |       |         |
| 5.  | Measure filled approximately two thirds full, moving a scoop around<br>the perimeter of the measure to evenly distribute the concrete as discharge                           | ged?  |         |
| 6.  | Layer rodded throughout its depth, just penetrating the previous layer (approximately 25 mm (1 in.) 25 times with hemispherical end of rod, uniformly distributing strokes?  |       |         |
| 7.  | Perimeter of the measure tapped 10 to 15 times with the mallet after rode                                                                                                    | ling? |         |
| Th  | ird layer                                                                                                                                                                    |       |         |
| 8.  | Measure slightly overfilled, moving a scoop around the perimeter of the measure to evenly distribute the concrete as discharged?                                             |       |         |
| 9.  | Layer rodded throughout its depth, just penetrating the previous layer (approximately 25 mm (1 in.)) 25 times with hemispherical end of rod, uniformly distributing strokes? |       |         |
| 10. | Perimeter of the measure tapped 10 to 15 times with the mallet after rodding each layer?                                                                                     |       |         |
| 11. | Concrete struck off level with top of the measure using the bar or strike-<br>plate and rim cleaned off?                                                                     | off   |         |
| 12. | Top flange of base cleaned?                                                                                                                                                  |       |         |
|     |                                                                                                                                                                              |       |         |

# **OVER**

| CONCRI    | ETE                           |                                 | W               | AQTC             | FOF            | P AASHTO   | Т 152 | (17)    |
|-----------|-------------------------------|---------------------------------|-----------------|------------------|----------------|------------|-------|---------|
| Procedu   | ıre Elemen                    | t                               |                 |                  |                | Tr         | ial 1 | Trial 2 |
| Using a   | Туре В Ме                     | eter:                           |                 |                  |                |            |       |         |
| 13. Both  | petcocks ope                  | en?                             |                 |                  |                |            |       |         |
| 14. Air v | alve closed b                 | between air cl                  | namber and t    | he measure?      |                |            |       |         |
| 15. Insid | e of cover cl                 | eaned and mo                    | oistened befo   | ore clamping to  | o base?        |            |       |         |
| 16. Wate  | r injected the                | rough petcocl                   | c until it flow | vs out the othe  | er petcock?    |            |       |         |
|           | •                             | to the petcoc<br>to insure all  |                 | while jarring a  | and or         | _          |       |         |
| 18. Air p | umped up to                   | just past init                  | ial pressure l  | ine?             |                |            |       |         |
| 19. A fev | v seconds all                 | owed for the                    | compressed      | air to stabilize | e?             |            |       |         |
| 20. Gaug  | e adjusted to                 | the initial pr                  | essure?         |                  |                |            |       |         |
| 21. Both  | petcocks clo                  | osed?                           |                 |                  |                |            |       |         |
| 22. Air v | alve opened                   | between chai                    | nber and me     | asure?           |                |            |       |         |
| 23. The o | outside of me                 | easure tapped                   | smartly with    | n the mallet?    |                |            |       |         |
|           |                               | valve open, g<br>t 0.1 percent? |                 | tapped and a     | ir percentage  | _          |       |         |
|           | alve released<br>e removing t |                                 | d then petco    | cks opened to    | release pressu | re         |       |         |
| 26. Aggr  | egate correct                 | tion factor ap                  | plied if requi  | ired?            |                |            |       |         |
| 27. Air c | ontent record                 | ded to 0.1 per                  | cent?           |                  |                |            |       |         |
| Comme     | ents: F                       | irst attempt:                   | Pass            | Fail             | Second atter   | mpt: Pass_ | F     | ail     |
|           |                               |                                 |                 |                  |                |            |       |         |
| Examine   | r Signature _                 |                                 |                 | W                | AQTC #:        |            | _     |         |

This checklist is derived, in part, from copyrighted material printed in ACI CP-1, published by the American Concrete Institute.

Concrete 7-16

# BULK SPECIFIC GRAVITY (Gmb) OF COMPACTED ASPHALT MIXTURES USING SATURATED SURFACE-DRY SPECIMENS FOP FOR AASHTO T 166

# Scope

This procedure covers the determination of bulk specific gravity ( $G_{mb}$ ) of compacted asphalt mixtures using three methods – A, B, and C – in accordance with AASHTO T 166-21. This FOP is for use on specimens not having open or interconnecting voids or absorbing more than 2.00 percent water by volume, or both. When specimens have open or interconnecting voids or absorbing more than 2.00 percent water by volume, or both. AASHTO T 275 or AASHTO T 331 should be performed.

# Overview

- Method A: Suspension
- Method B: Volumeter
- Method C: Rapid test for A or B

# **Test Specimens**

Test specimens may be either laboratory-molded or sampled from asphalt mixture pavement. For specimens it is recommended that the diameter be equal to four times the maximum size of the aggregate and the thickness be at least one and one half times the maximum size.

# Terminology

*Constant Mass*: The state at which a mass does not change more than a given percent, after additional drying for a defined time interval, at a required temperature.

# Apparatus – Method A (Suspension)

- Balance or scale: 5 kg capacity, readable to 0.1 g, and fitted with a suitable suspension apparatus and holder to permit weighing the specimen while suspended in water, conforming to AASHTO M 231.
- Suspension apparatus: Wire of the smallest practical size and constructed to permit the container to be fully immersed.
- Water bath: For immersing the specimen in water while suspended under the balance or scale and equipped with an overflow outlet for maintaining a constant water level.
- Towel: Damp cloth towel used for surface drying specimens.
- Oven: Capable of maintaining a temperature of 110 ±5°C (230 ±9°F) for drying the specimens to a constant mass.

50\_T166\_short\_21\_errata

Asphalt 18-1

# ASPHALT

WAQTC

- Pan: Pan or other suitable container of known mass, large enough to hold a sample for drying in oven.
- Thermometer: Having a range of 19 to 27°C (66 to 80°F), graduated in 0.1°C (0.2°F) subdivisions.
- Vacuum device: refer to the FOP for AASHTO R 79 (optional)

# Procedure – Method A (Suspension)

Recently molded laboratory samples that have not been exposed to moisture do not need drying.

- 1. Dry the specimen to constant mass, if required.
  - a. Oven method
    - i. Initially dry overnight at  $52 \pm 3^{\circ}C (125 \pm 5^{\circ}F)$ .
    - ii. Determine and record the mass of the specimen. Designate this mass as M<sub>p</sub>.
    - iii. Return the specimen to the oven for at least 2 hours.
    - iv. Determine and record the mass of the specimen. Designate this mass as M<sub>n</sub>.
    - v. Determine percent change by subtracting the new mass determination, M<sub>n</sub>, from the previous mass determination, M<sub>p</sub>, divide by the previous mass determination M<sub>p</sub>, and multiply by 100.
    - vi. Continue drying until there is no more than 0.05 percent change in specimen mass after 2-hour drying intervals (constant mass).
    - vii. Constant mass has been achieved; sample is defined as dry.

*Note 1:* To expedite the procedure, steps 1 and 2 may be performed last. To further expedite the process, see Method C.

- b. Vacuum dry method according to the FOP for AASHTO R 79.
- 2. Cool the specimen in air to  $25 \pm 5^{\circ}$ C ( $77 \pm 9^{\circ}$ F), and determine and record the dry mass to the nearest 0.1 g. Designate this mass as A.
- 3. Fill the water bath to overflow level with water at  $25 \pm 1^{\circ}C (77 \pm 2^{\circ}F)$  and allow the water to stabilize.
- 4. Zero or tare the balance with the immersion apparatus attached, ensuring that the device is not touching the sides or the bottom of the water bath.
- 5. Immerse the specimen shaking to remove the air bubbles. Place the specimen on its side in the suspension apparatus. Leave it immersed for  $4 \pm 1$  minutes.
- 6. Determine and record the submerged weight to the nearest 0.1 g. Designate this submerged weight as C.
- 7. Remove the sample from the water and quickly surface dry with a damp cloth towel within 5 seconds.

50\_T166\_short\_21\_errata

Asphalt 18-2

FOP AASHTO T 166 (21)

- 8. Zero or tare the balance.
- 9. Immediately determine and record the mass of the saturated surface-dry (SSD) specimen to nearest 0.1 g. Designate this mass as B. Any water that seeps from the specimen during the mass determination is considered part of the saturated specimen. Do not to exceed 15 seconds performing Steps 7 through 9.

# Calculations – Method A (Suspension)

#### **Constant Mass:**

Calculate constant mass using the following formula:

$$\%$$
*Change* =  $\frac{M_p - M_n}{M_p} \times 100$ 

Where:

 $M_p$  = previous mass measurement, g  $M_n$  = new mass measurement, g

Bulk specific gravity (G<sub>mb</sub>) and percent water absorbed:

$$G_{mb} = \frac{A}{B - C}$$

Percent Water Absorbed (by volume) = 
$$\frac{B-A}{B-C} \times 100$$

Where:

- B = Mass of SSD specimen in air, g
- C = Weight of specimen in water at 25  $\pm$ 1°C (77  $\pm$ 2°F), g

50\_T166\_short\_21\_errata

Asphalt 18-3

# ASPHALT

#### WAQTC

Example:

$$G_{mb} = \frac{4833.6 \ g}{4842.4 \ g - 2881.3 \ g} = 2.465$$

% Water Absorbed (by volume) = 
$$\frac{4842.4 \ g - 4833.6 \ g}{4842.4 \ g - 2881.3 \ g} \times 100 = 0.45\%$$

Given:

| А | = | 4833.6 g |
|---|---|----------|
| В | = | 4842.4 g |
| С | = | 2881.3 g |

# Apparatus – Method B (Volumeter)

- Balance or scale: 5 kg capacity, readable to 0.1 g and conforming to AASHTO M 231.
- Water bath: Thermostatically controlled to  $25 \pm 0.5$  °C ( $77 \pm 0.9$  °F).
- Thermometer: Range of 19 to 27°C (66 to 80°F) and graduated in 0.1°C (0.2°F) subdivisions.
- Volumeter: Calibrated to 1200 mL or appropriate capacity for test sample and having a tapered lid with a capillary bore.
- Oven: Capable of maintaining a temperature of  $110 \pm 5^{\circ}C (230 \pm 9^{\circ}F)$  for drying the specimens to a constant mass.
- Pan: Pan or other suitable container of known mass, large enough to hold a sample for drying in oven.
- Towel: Damp cloth towel used for surface drying specimens.
- Vacuum device: refer to the FOP for AASHTO R 79 (optional)

Asphalt 18-4

# **Procedure – Method B (Volumeter)**

Recently molded laboratory samples that have not been exposed to moisture do not need drying.

- 1. Dry the specimen to constant mass, if required.
  - a. Oven method:
    - i. Initially dry overnight at  $52 \pm 3^{\circ}C (125 \pm 5^{\circ}F)$ .
    - ii. Determine and record the mass of the specimen. Designate this mass as M<sub>p</sub>.
    - iii. Return the specimen to the oven for at least 2 hours.
    - iv. Determine and record the mass of the specimen. Designate this mass as M<sub>n</sub>.
    - v. Determine percent change by subtracting the new mass determination, M<sub>n</sub>, from the previous mass determination, M<sub>p</sub>, divide by the previous mass determination, M<sub>p</sub>, and multiply by 100.
    - vi. Continue drying until there is no more than 0.05 percent change in specimen mass after 2-hour drying intervals (constant mass).
    - vii. Constant mass has been achieved; sample is defined as dry.
  - *Note 1:* To expedite the procedure, steps 1 and 2 may be performed last. To further expedite the process, see Method C.
  - b. Vacuum dry method according to the FOP for AASHTO R 79.
- 2. Cool the specimen in air to 25 ±5°C (77 ±9°F), and determine and record the dry mass to the nearest 0.1 g. Designate this mass as A.
- 3. Immerse the specimen in the temperature-controlled water bath for at least 10 minutes.
- 4. Fill the volumeter with distilled water at  $25 \pm 1^{\circ}$ C ( $77 \pm 2^{\circ}$ F) making sure some water escapes through the capillary bore of the tapered lid.
- 5. Wipe the volumeter dry. Determine the mass of the volumeter to the nearest 0.1 g. Designate this mass as D.
- 6. At the end of the ten-minute period, remove the specimen from the water bath and quickly surface dry with a damp cloth towel within 5 seconds.
- 7. Immediately determine and record the mass of the SSD specimen to the nearest 0.1 g. Designate this mass as B. Any water that seeps from the specimen during the mass determination is considered part of the saturated specimen.
- 8. Place the specimen in the volumeter and let stand 60 seconds.
- 9. Bring the temperature of the water to  $25 \pm 1^{\circ}$ C (77  $\pm 2^{\circ}$ F) and cover the volumeter, making sure some water escapes through the capillary bore of the tapered lid.
- 10. Wipe the volumeter dry.
- 11. Determine and record the mass of the volumeter and specimen to the nearest 0.1 g. Designate this mass as E.

Note 2: Method B is not acceptable for use with specimens that have more than 6 percent air voids.

| 50_T166_short_21_errata | Asphalt 18-5 |  |
|-------------------------|--------------|--|
|-------------------------|--------------|--|

# ASPHALT

# Calculations – Method B (Volumeter)

#### **Constant Mass:**

Calculate constant mass using the following formula:

$$\%Change = \frac{M_p - M_n}{M_p} \times 100$$

Where:

M<sub>p</sub> = previous mass measurement, g

 $M_n$  = new mass measurement, g

# Bulk specific gravity (G<sub>mb</sub>) and percent water absorbed:

$$G_{mb} = \frac{A}{B + D - E}$$
Percent Water Absorbed (by volume) =  $\frac{B - A}{B + D - E} \times 100$ 

Where:

 $G_{mb} =$  Bulk specific gravity

A = Mass of dry specimen in air, g

B = Mass of SSD specimen in air, g

D = Mass of volumeter filled with water at 25  $\pm$ 1°C (77  $\pm$ 2°F), g

E = Mass of volumeter filled with specimen and water, g

50\_T166\_short\_21\_errata

Asphalt 18-6

FOP AASHTO T 166 (21)

Example:

$$G_{mb} = \frac{4833.6 \ g}{4842.4 \ g + 2924.4 \ g - 5806.0 \ g} = 2.465$$

% Water Absorbed (by volume) = 
$$\frac{4842.4 \text{ } g - 4833.6 \text{ } g}{4842.4 \text{ } g + 2924.4 \text{ } g - 5806.0 \text{ } g} \times 100 = 0.45\%$$

| Given: |   |          |
|--------|---|----------|
| А      | = | 4833.6 g |
| В      | = | 4842.4 g |
| D      | = | 2924.4 g |
| Е      | = | 5806.0 g |

# Method C (Rapid Test for Method A or B)

See Methods A or B.

*Note 3:* This procedure can be used for specimens that are not required to be saved and contain substantial amounts of moisture. Cores can be tested the same day as obtained by this method.

# Procedure – Method C (Rapid Test for Method A or B)

- 1. Start on Step 3 of Method A or B, and complete that procedure, then determine dry mass, A, as follows.
- 2. Determine and record mass of a large, flat-bottom container.
- 3. Place the specimen in the container.
- 4. Place in an oven at a minimum of 105°C (221°F). Do not exceed the Job Mix Formula mixing temperature.
- 5. Dry until the specimen can be easily separated into fine aggregate particles that are not larger than 6.3 mm (<sup>1</sup>/<sub>4</sub> in.).
- 6. Determine and record the mass of the specimen. Designate this mass as  $M_p$ .
- 7. Return the specimen to the oven for at least 2 hours.
- 8. Determine and record the mass of the specimen. Designate this mass as  $M_n$ .
- 9. Determine percent change by subtracting the new mass determination, M<sub>n</sub>, from the previous mass determination, M<sub>p</sub>, divide by the previous mass determination, M<sub>p</sub>, and multiply by 100.

50\_T166\_short\_21\_errata

Asphalt 18-7

# ASPHALT

WAQTC

- 10. Continue drying until there is no more than 0.05 percent change in specimen mass after 2-hour drying intervals (constant mass).
- 11. Constant mass has been achieved; sample is defined as dry.
- 12. Cool in air to  $25 \pm 5^{\circ}$ C (77  $\pm 9^{\circ}$ F).
- 13. Determine and record the mass of the container and dry specimen to the nearest 0.1 g.
- 14. Determine and record the mass of the dry specimen to the nearest 0.1 g by subtracting the mass of the container from the mass determined in Step 13. Designate this mass as A.

# Calculations – Method C (Rapid Test for Method A or B)

Complete the calculations as outlined in Methods A or B, as appropriate.

# Report

- On forms approved by the agency
- Sample ID
- G<sub>mb</sub> to the nearest 0.001
- Absorption to the nearest 0.01 percent
- Method performed.

50\_T166\_short\_21\_errata

# WAQTC

# PERFORMANCE EXAM CHECKLIST

#### BULK SPECIFIC GRAVITY OF COMPACTED ASPHALT MIXTURES USING SATURATED SURFACE-DRY SPECIMENS FOP FOR AASHTO T 166

| Participant Name | Exam Date |
|------------------|-----------|
| 1                |           |

Record the symbols "P" for passing or "F" for failing on each step of the checklist.

| Procedure Element                                                                                                                                        | Trial 1 | Trial 2 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|
| Method A:                                                                                                                                                |         |         |
| 1. Mass of dry sample determined.                                                                                                                        |         |         |
| a. Sample dried to constant mass if required?                                                                                                            |         |         |
| b. Cooled in air to $25 \pm 5^{\circ}$ C (77 $\pm 9^{\circ}$ F)?                                                                                         |         |         |
| c. Dry mass determined to 0.1g?                                                                                                                          |         |         |
| 2. Water at the overflow?                                                                                                                                |         |         |
| 3. Balance zeroed?                                                                                                                                       |         |         |
| 4. Immersed weight determined.                                                                                                                           |         |         |
| a. Water at $25 \pm 1^{\circ}C (77 \pm 2^{\circ}F)$ ?                                                                                                    |         |         |
| b. Immersed, shaken, on side, for $4 \pm 1 \text{ min.}$ ?                                                                                               |         |         |
| c. Immersed weight determined to 0.1g?                                                                                                                   |         |         |
| 5. Sample rapidly surface dried with damp towel and saturated surface dry (SSD) mass determined to 0.1 g (entire operation performed within 15 seconds)? |         |         |
| <ol> <li>G<sub>mb</sub> calculated to the nearest 0.001?</li> </ol>                                                                                      |         |         |
| <ol> <li>One calculated to the nearest 0.001 percent</li> <li>Absorption calculated to the nearest 0.01 percent</li> </ol>                               |         |         |
| 7. Absorption calculated to the hearest 0.01 percent                                                                                                     |         |         |

# OVER

33\_T166\_pr\_21\_errata

Pub. October 2021

T 166

| AS | PHA  | LT WAQTC FOP AASH                                                                                                                                                       | ITO T 166 | 5 (21)   |
|----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|
| Pr | ocea | lure Element                                                                                                                                                            | Trial 1   | Trial 2  |
| Mo | etho | d B:                                                                                                                                                                    |           |          |
| 1. | Spo  | ecimen dried, cooled, and mass determined as in Method A?                                                                                                               |           |          |
| 2. | Sat  | urated surface-dry (SSD) mass determined to 0.1g.                                                                                                                       |           |          |
|    | a.   | Immersed at least 10 minutes at $25 \pm 1^{\circ}C (77 \pm 2^{\circ}F)$ ?                                                                                               |           |          |
|    | b.   | Sample rapidly dried with damp towel?                                                                                                                                   |           | <u> </u> |
|    | c.   | Specimen mass determined to 0.1 g?                                                                                                                                      |           |          |
|    | d.   | Any water that seeps from specimen included in mass?                                                                                                                    |           |          |
| 3. |      | ss of volumeter filled with distilled water at $25 \pm 1^{\circ}C (77 \pm 2^{\circ}F)$ ermined?                                                                         |           |          |
| 4. | SS   | D specimen placed into volumeter and let stand for 1 minute?                                                                                                            |           |          |
| 5. | cov  | nperature of water brought to $25 \pm 1^{\circ}$ C (77 $\pm 2^{\circ}$ F) and volumeter vered, allowing some water to escape through the capillary bore he tapered lid? |           |          |
| 6. | Vo   | lumeter wiped dry, and mass of volumeter and contents determined?                                                                                                       |           |          |
| 7. | Gm   | b calculated to the nearest 0.001?                                                                                                                                      |           |          |
| 8. | Ab   | sorption calculated to the nearest 0.01 percent?                                                                                                                        |           |          |
| M  | etho | d C/A:                                                                                                                                                                  |           |          |
| 1. | Im   | mersed weight determined.                                                                                                                                               |           |          |
|    | a.   | Water at $25 \pm 1^{\circ}C (77 \pm 2^{\circ}F)$ ?                                                                                                                      |           |          |
|    | b.   | Immersed, shaken, on side, for $4 \pm 1$ minutes?                                                                                                                       |           |          |
|    | c.   | Immersed weight determined to 0.1 g?                                                                                                                                    |           |          |
| 2. | Saı  | nple rapidly surface dried with damp cloth (within 5 seconds)?                                                                                                          |           |          |
| 3. | Sat  | urated surface dry mass determined to 0.1 g?                                                                                                                            |           |          |
| 4. | Dr   | mass determined by:                                                                                                                                                     |           |          |
|    | a.   | Heating in oven at a minimum of 105°C (221°F)?                                                                                                                          |           |          |
|    | b.   | Breaking down to 6.3 mm (1/4 in.) particles?                                                                                                                            |           |          |
|    | c.   | Drying in oven to constant mass (change less than 0.05 percent in 2 hours of additional drying)?                                                                        |           |          |
|    | d.   | Cooled in air to $25 \pm 5^{\circ}$ C (77 $\pm 9^{\circ}$ F) and mass determined to 0.1 g?                                                                              |           |          |
| 5. | Gm   | b calculated to the nearest 0.001?                                                                                                                                      |           |          |
| 6. | Ab   | sorption calculated to the nearest 0.01?                                                                                                                                |           |          |
|    |      | OVER                                                                                                                                                                    |           |          |

| ASPHAL               | LT                                                       |                 | WAQTC                    | FOP AA                                | SHTO T 16 | 6 (21) |
|----------------------|----------------------------------------------------------|-----------------|--------------------------|---------------------------------------|-----------|--------|
| Procedu              | ıre Element                                              |                 |                          |                                       | Trial 1   | Trial  |
| Method               | <b>C/B:</b>                                              |                 |                          |                                       |           |        |
| 1. Satur             | rated surface-dry                                        | (SSD) mass d    | etermined to 0.1         | lg.                                   |           |        |
| <b>a.</b> 1          | Immersed at leas                                         | t 10 minutes a  | t 25 $\pm$ 1°C (77 $\pm$ | 2°F)?                                 |           |        |
| b. 1                 | Sample rapidly d                                         | lried with dam  | p towel (within          | 5 seconds)?                           |           |        |
| c.                   | Specimen mass of                                         | letermined to   | ).1g?                    |                                       |           |        |
| d                    | Any water that s                                         | eeps from spec  | imen included i          | in mass?                              |           |        |
|                      | s of volumeter fil<br>rmined to 0.1 g?                   | led with distil | led water at 25 =        | ±1°C (77 ±2°F)                        |           |        |
| 3. SSD               | specimen placed                                          | l into volumete | er and let stand f       | for 1 minute?                         |           |        |
| cove                 | perature of water<br>red, allowing son<br>e tapered lid? | •               |                          | · · · · · · · · · · · · · · · · · · · |           |        |
|                      | umeter wiped dry<br>.1 g?                                | , and mass of   | volumeter and c          | ontents determined                    | 1         |        |
| 6. Dry 1             | mass determined                                          | by:             |                          |                                       |           |        |
| a. V                 | Warming in oven                                          | at a minimum    | of 105°C (221°           | Ϋ́F)?                                 |           |        |
| b. E                 | Breaking down to                                         | 6.3 mm (¼ in    | .) particles?            |                                       |           |        |
|                      | Drying in oven to<br>2 hours of additio                  |                 | s (change less th        | an 0.05 percent in                    |           |        |
|                      | Cooled in air to 2<br>o 0.1 g?                           | 5 ±5°C (77 ±9   | °F) and mass de          | etermined                             |           |        |
| 7. G <sub>mb</sub> ( | calculated to the                                        | nearest 0.001?  | )                        |                                       |           |        |
| 8. Absc              | orption calculated                                       | to the nearest  | 0.01 percent?            |                                       |           |        |
| Comme                | ents: First at                                           | tempt: Pass_    | Fail                     | Second attempt:                       | Pass]     | Fail   |
|                      |                                                          |                 |                          |                                       |           |        |
| Бі́                  | en Signatura                                             |                 |                          | WAQTC #:                              |           |        |

T 166

ASPHALT

WAQTC

33\_T166\_pr\_21\_errata

Asphalt 8-18

Pub. October 2021

Page 12 of 12

WSDOT Materials Manual M 46-01.40 January 2022

# WSDOT Errata to FOP for AASHTO T 176

# Plastic Fines in Graded Aggregates and Soils by the Use of the Sand Equivalent Test

WAQTC FOP for AASHTO T 176 has been adopted by WSDOT with the following changes:

#### Sample Preparation

Replace step 7 with below:

7. WSDOT requires two samples.

Include step 8 below:

Dry the test sample in an oven in accordance with FOP for AASHTO T 255. The oven temperature shall not exceed 350°F (177°C). Cool to room temperature before testing. It is acceptable to place the test sample in a larger container to aid drying.

#### Procedure

- 6. After loosening the material from the bottom of the cylinder, shake the cylinder and contents by any one of the following methods:
  - c. Hand Method Method not recognized by WSDOT.
- 10. Clay and sand readings:

#### Replace step d with below:

- e. If two Sand Equivalent (SE) samples are run on the same material and the second varies by more than ± 8, based on the first cylinder result, additional tests shall be run.
- f. Step not required by WSDOT

# PLASTIC FINES IN GRADED AGGREGATES AND SOILS BY THE USE OF THE SAND EQUIVALENT TEST FOP FOR AASHTO T 176

# Scope

This procedure covers the determination of plastic fines in accordance with AASHTO T 176-02. It serves as a rapid test to show the relative proportion of fine dust or clay-like materials in fine aggregates (FA) and soils.

# Apparatus

See AASHTO T 176 for a detailed listing of sand equivalent apparatus. Note that the siphon tube and blow tube may be glass or stainless steel as well as copper.

- Graduated plastic cylinder.
- Rubber stopper.
- Irrigator tube.
- Weighted foot assembly: Having a mass of 1000 ±5g. There are two models of the weighted foot assembly. The older model has a guide cap that fits over the upper end of the graduated cylinder and centers the rod in the cylinder. It is read using a slot in the centering screws. The newer model has a sand-reading indicator 254 mm (10 in.) above this point and is preferred for testing clay-like materials.
- Bottle: clean, glass or plastic, of sufficient size to hold working solution
- Siphon assembly: The siphon assembly will be fitted to a 4 L (1 gal.) bottle of working calcium chloride solution placed on a shelf 915  $\pm$ 25 mm (36  $\pm$ 1 in.) above the work surface.
- Measuring can: With a capacity of  $85 \pm 5 \text{ mL}$  (3 oz.).
- Balance or scale: Capacity sufficient for sample mass, accurate to 0.1 percent of the sample mass or readable to 0.1 g and meeting the requirements of AASHTO M 231.
- Funnel: With a wide mouth for transferring sample into the graduated cylinder.
- Quartering cloth: 600 mm (2 ft.) square nonabsorbent cloth, such as plastic or oilcloth.
- Mechanical splitter: See the FOP for AASHTO R 76.
- Strike-off bar: A straightedge or spatula.
- Clock or watch reading in minutes and seconds.
- Manually operated sand equivalent shaker: Capable of producing an oscillating motion at a rate of 100 complete cycles in 45 ±5 seconds, with a hand assisted half stroke length of 127 ±5 mm (5 ±0.2 in.). It may be held stable by hand during the shaking operation. It is recommended that this shaker be fastened securely to a firm and level mount, by bolts or clamps, if a large number of determinations are to be made.

42\_T176\_short\_21\_errata

Aggregate 14-1

WAQTC

- Mechanical shaker: See AASHTO T 176 for equipment and procedure.
- Oven: Capable of maintaining a temperature of  $110 \pm 5^{\circ}C (230 \pm 9^{\circ}F)$ .
- Thermometer: Calibrated liquid-in-glass or electronic digital type designed for total immersion and accurate to 0.1°C (0.2°F).

# Materials

- Stock calcium chloride solution: Obtain commercially prepared calcium chloride stock solution meeting AASHTO requirements.
- Working calcium chloride solution: Make 3.8 L (1 gal) of working solution. Fill the bottle with 2 L (1/2 gal) of distilled or demineralized water, add one 3 oz. measuring can (85 ±5 mL) of stock calcium chloride solution. Agitate vigorously for 1 to 2 minutes. Add the remainder of the water, approximately 2 L (1/2 gal.) for a total of 3.8 L (1 gal) of working solution. Repeat the agitation process. Tap water may be used if it is proven to be non-detrimental to the test and if it is allowed by the agency. The shelf life of the working solution is approximately 30 days. Label working solution with the date mixed. Discard working solutions more than 30 days old.

Note 1: The graduated cylinder filled to 4.4 in. contains 88 mL and may be used to measure the stock solution.

# Control

The temperature of the working solution should be maintained at  $22 \pm 3$  °C ( $72 \pm 5$  °F) during the performance of the test. If field conditions preclude the maintenance of the temperature range, reference samples should be submitted to the Central/Regional Laboratory, as required by the agency, where proper temperature control is possible. Samples that meet the minimum sand equivalent requirement at a working solution temperature outside of the temperature range need not be subject to reference testing.

# **Sample Preparation**

- 1. Obtain the sample in accordance with the FOP for AASHTO R 90 and reduce in accordance with the FOP for AASHTO R 76.
- 2. Sieve the sample over the 4.75 mm (No. 4) sieve. If the material is in clods, break it up and re-screen it over a 4.75 mm (No. 4) sieve. Clean all fines from particles retained on the 4.75 mm (No. 4) sieve and include with the material passing that sieve.
- 3. Split or quarter 1000 to 1500 g of material from the portion passing the 4.75 mm (No. 4) sieve. Use extreme care to obtain a truly representative portion of the original sample.
- *Note 2:* Experiments show that, as the amount of material being reduced by splitting or quartering is decreased, the accuracy of providing representative portions is reduced. It is imperative that the sample be split or quartered carefully. When it appears necessary, dampen the material before splitting or quartering to avoid segregation or loss of fines.
- *Note 3:* All tests, including reference tests, will be performed using Alternative Method No. 2 as described in AASHTO T 176, unless otherwise specified.
- 4. The sample must have the proper moisture content to achieve reliable results. This condition is determined by tightly squeezing a small portion of the thoroughly mixed

42\_T176\_short\_21\_errata

Aggregate 14-2

sample in the palm of the hand. If the cast that is formed permits careful handling without breaking, the correct moisture content has been obtained.

*Note 4:* Clean sands having little 75 µm (No. 200), such as sand for Portland Cement Concrete (PCC), may not form a cast.

If the material is too dry, the cast will crumble, and it will be necessary to add water and remix and retest until the material forms a cast. When the moisture content is altered to provide the required cast, the altered sample should be placed in a pan, covered with a lid or with a damp cloth that does not touch the material, and allowed to stand for a minimum of 15 minutes. Samples that have been sieved without being air-dried and still retain enough natural moisture are exempted from this requirement.

If the material shows any free water, it is too wet to test and must be drained and air dried. Mix frequently to ensure uniformity. This drying process should continue until squeezing provides the required cast.

- 5. Place the sample on the quartering cloth and mix by alternately lifting each corner of the cloth and pulling it over the sample toward the diagonally opposite corner, being careful to keep the top of the cloth parallel to the bottom, thus causing the material to be rolled. When the material appears homogeneous, finish the mixing with the sample in a pile near the center of the cloth.
- 6. Fill the measuring can by pushing it through the base of the pile while exerting pressure with the hand against the pile on the side opposite the measuring can. As the can is moved through the pile, hold enough pressure with the hand to cause the material to fill the tin to overflowing. Press firmly with the palm of the hand, compacting the material and placing the maximum amount in the can. Strike off the can level with the straightedge or spatula.
- 7. When required, repeat steps 5 and 6 to obtain additional samples.

#### Procedure

- 1. Start the siphon by forcing air into the top of the solution bottle through the tube while the pinch clamp is open. Siphon  $101.6 \pm 2.5 \text{ mm} (4 \pm 0.1 \text{ in.})$  of working calcium chloride solution into the plastic cylinder.
- 2. Pour the prepared test sample from the measuring can into the plastic cylinder, using the funnel to avoid spilling.
- 3. Tap the bottom of the cylinder sharply on the heel of the hand several times to release air bubbles and to promote thorough wetting of the sample.
- 4. Allow the wetted sample to stand undisturbed for  $10 \pm 1$  minutes.
- 5. At the end of the 10-minute period, stopper the cylinder and loosen the material from the bottom by simultaneously partially inverting and shaking the cylinder.

WAQTC

- 6. After loosening the material from the bottom of the cylinder, shake the cylinder and contents by any one of the following methods:
  - a. Mechanical Method Place the stoppered cylinder in the mechanical shaker, set the timer, and allow the machine to shake the cylinder and contents for  $45 \pm 1$  seconds.

Caution: Agencies may require additional operator qualifications for the next two methods.

b. Manual Method – Secure the stoppered cylinder in the three spring clamps on the carriage of the manually-operated sand equivalent shaker and set the stroke counter to zero. Stand directly in front of the shaker and force the pointer to the stroke limit marker painted on the backboard by applying an abrupt horizontal thrust to the upper portion of the right hand spring strap.

Remove the hand from the strap and allow the spring action of the straps to move the carriage and cylinder in the opposite direction without assistance or hindrance. Apply enough force to the right-hand spring steel strap during the thrust portion of each stroke to move the pointer to the stroke limit marker by pushing against the strap with the ends of the fingers to maintain a smooth oscillating motion. The center of the stroke limit marker is positioned to provide the proper stroke length and its width provides the maximum allowable limits of variation.

Proper shaking action is accomplished when the tip of the pointer reverses direction within the marker limits. Proper shaking action can best be maintained by using only the forearm and wrist action to propel the shaker. Continue shaking for 100 strokes.

- c. Hand Method Hold the cylinder in a horizontal position and shake it vigorously in a horizontal linear motion from end to end. Shake the cylinder 90 cycles in approximately 30 seconds using a throw of 229 mm  $\pm 25$  mm (9  $\pm 1$  in.). A cycle is defined as a complete back and forth motion. To properly shake the cylinder at this speed, it will be necessary for the operator to shake with the forearms only, relaxing the body and shoulders.
- 7. Set the cylinder upright on the worktable and remove the stopper.
- 8. Insert the irrigator tube in the cylinder and rinse material from the cylinder walls as the irrigator is lowered. Force the irrigator through the material to the bottom of the cylinder by applying a gentle stabbing and twisting action while the working solution flows from the irrigator tip. Work the irrigator tube to the bottom of the cylinder as quickly as possible as it becomes more difficult to do this as the washing proceeds. This flushes the fine material into suspension above the coarser sand particles.

Continue to apply a stabbing and twisting action while flushing the fines upward until the cylinder is filled to the 381 mm (15 in.) mark. Then raise the irrigator slowly without shutting off the flow so that the liquid level is maintained at about 381 mm (15 in.) while the irrigator is being withdrawn. Regulate the flow just before the irrigator is entirely withdrawn and adjust the final level to 381 mm (15 in.).

*Note 5:* Occasionally the holes in the tip of the irrigator tube may become clogged by a particle of sand. If the obstruction cannot be freed by any other method, use a pin or other sharp object to force it out, using extreme care not to enlarge the size of the opening. Also, keep the tip sharp as an aid to penetrating the sample.

42\_T176\_short\_21\_errata

Aggregate 14-4

- 9. Allow the cylinder and contents to stand undisturbed for 20 minutes  $\pm 15$  seconds. Start timing immediately after withdrawing the irrigator tube.
- *Note 6:* Any vibration or movement of the cylinder during this time will interfere with the normal settling rate of the suspended clay and will cause an erroneous result.
- 10. Clay and sand readings:
  - a. At the end of the 20-minute sedimentation period, read and record the level of the top of the clay suspension. This is referred to as the clay reading.
  - b. If no clear line of demarcation has formed at the end of the 20-minute sedimentation period, allow the sample to stand undisturbed until a clay reading can be obtained, then immediately read and record the level of the top of the clay suspension and the total sedimentation time. If the total sedimentation time exceeds 30 minutes, rerun the test using three individual samples of the same material. Read and record the clay column height of the sample requiring the shortest sedimentation period only. Once a sedimentation time has been established, subsequent tests will be run using that time. The time will be recorded along with the test results on all reports.
  - c. After the clay reading has been taken, place the weighted foot assembly over the cylinder and gently lower the assembly until it comes to rest on the sand. Do not allow the indicator to hit the mouth of the cylinder as the assembly is being lowered. Subtract 254 mm (10 in.) from the level indicated by the extreme top edge of the indicator and record this value as the sand reading.
  - d. If clay or sand readings fall between 2.5 mm (0.1 in.) graduations, record the level of the higher graduation as the reading. For example, a clay reading that appears to be 7.95 would be recorded as 8.0; a sand reading that appears to be 3.22 would be recorded as 3.3.
  - e. If two Sand Equivalent (SE) samples are run on the same material and the second varies by more than ±4, based on the first cylinder result, additional tests shall be run.
  - f. If three or more Sand Equivalent (SE) samples are run on the same material, average the results. If an individual result varies by more than  $\pm 4$ , based on the average result, additional tests shall be run.

# Calculations

Calculate the SE to the nearest 0.1 using the following formula:

$$SE = \frac{Sand Reading}{Clay Reading} \times 100$$

42\_T176\_short\_21\_errata

Aggregate 14-5

WAQTC

Example

$$SE = \frac{3.3}{8.0} \times 100 = 41.25 \text{ or } 41.3$$
 Report 42

Given:

| Sand Reading = | 3.3 |
|----------------|-----|
| Clay Reading = | 8.0 |

*Note 7:* This example reflects the use of equipment made with English units. At this time, equipment made with metric units is not available.

Report the SE as the next higher whole number. In the example above, the 41.3 would be reported as 42. An SE of 41.0 would be reported as 41.

When averaging two or more samples, raise each calculated SE value to the next higher whole number (reported value) before averaging.

#### **Example:**

calculated value 1 = 41.3 calculated value 2 = 42.8 These values are reported as 42 and 43, respectively.

Average the two reported values:

Average 
$$SE = \frac{42 + 43}{2} = 42.5$$
 Report 43

If the average value is not a whole number, raise it to the next higher whole number.

# Report

- On forms approved by the agency
- Sample ID
- Results to the next higher whole number
- Sedimentation time if over 20 minutes

42\_T176\_short\_21\_errata

Aggregate 14-6

T 176

# PERFORMANCE EXAM CHECKLIST

# PLASTIC FINES IN GRADED AGGREGATES AND SOILS BY THE USE OF THE SAND EQUIVALENT TEST FOP FOR AASHTO T 176

| Par | ticipant Name                                                                                                                                                       | Exam Date                  |         |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------|
| Ree | cord the symbols "P" for passing or "F" for failing on e                                                                                                            | ach step of the checklist. |         |
| Pro | ocedure Element                                                                                                                                                     | Trial 1                    | Trial 2 |
| Sa  | mple Preparation                                                                                                                                                    |                            |         |
| 1.  | Sample passed through 4.75 mm (No. 4) sieve?                                                                                                                        |                            |         |
| 2.  | Material in clods broken up and re-screened?                                                                                                                        |                            |         |
| 3.  | Split or quarter 1,000 to 1,500 g of material passing t (No. 4) sieve? NOTE: If necessary, the material may before splitting to avoid segregation or loss of fines. |                            |         |
| 4.  | No fines lost?                                                                                                                                                      |                            |         |
| 5.  | Working solution dated?                                                                                                                                             |                            |         |
| 6.  | Temperature of working solution $22 \pm 3^{\circ}C (72 \pm 5^{\circ}F)^{\circ}$                                                                                     | ?                          |         |
| 7.  | Working calcium chloride solution $915 \pm 25 \text{ mm} (36 \pm 25 \text{ mm})$ above the work surface?                                                            | ±1in)                      |         |
| 8.  | $101.6 \pm 2.5 \text{ mm} (4 \pm 0.1 \text{in})$ working calcium chloride into cylinder?                                                                            | solution siphoned          |         |
| 9.  | Material checked for moisture condition by tightly so<br>portion in palm of hand and forming a cast?                                                                | lueezing small             |         |
| 10. | Sample at proper water content?                                                                                                                                     |                            |         |
|     | a. If too dry (cast crumbles easily) water added, re-r<br>and allowed to stand for at least 15 minutes?                                                             | nixed, covered,            |         |
|     | b. If too wet (shows free water) sample drained, air mixed frequently?                                                                                              | dried and                  |         |
| 11. | Sample placed on splitting cloth and mixed by alternative corner of the cloth and pulling it over the sample tow opposite corner, causing material to be rolled?    |                            |         |
| 12. | Is material thoroughly mixed?                                                                                                                                       |                            |         |
| 13. | When material appears to be homogeneous, mixing f<br>sample in a pile near center of cloth?                                                                         | inished with               |         |
| 14. | Fill the 85 mL (3 oz) tin by pushing through base of j hand on opposite side of pile?                                                                               | pile with other            |         |

#### **OVER**

T 176

| AGGREGATE                                                  | WAQTC                                           | FOP AASHTO T 17      | 76 (09) |
|------------------------------------------------------------|-------------------------------------------------|----------------------|---------|
| Procedure Element                                          |                                                 | Trial 1              | Trial 2 |
| 15. Material fills tin to overf                            | lowing?                                         |                      |         |
| 16. Material compacted into                                | tin with palm of hand?                          |                      |         |
| 17. Tin struck off level using                             | spatula or straightedge?                        |                      |         |
| 18. Prepared sample funnele                                | d into cylinder with no loss of                 | fines?               |         |
| 19. Bottom of cylinder tappe times to release air bubbl    | d sharply on heel of hand seveles?              | eral                 |         |
| 20. Wetted sample allowed t                                | o stand undisturbed for 10 mi                   | n. ±1 min.?          |         |
| 21. Cylinder stoppered and n                               | naterial loosened from bottom                   | n by shaking?        |         |
| 22. Stoppered cylinder place<br>cylinder shaken 45 ±1 se   | d properly in mechanical shak conds?            | cer and              |         |
| 23. Following shaking, cylin stopper removed?              | der set vertical on work surfac                 | ce and               |         |
| 24. Irrigator tube inserted in cylinder walls as irrigator | cylinder and material rinsed f<br>r is lowered? | rom                  |         |
| 25. Irrigator tube forced thro gentle stabbing and twist   | ugh material to bottom of cyli<br>ing action?   | inder by             |         |
| 26. Stabbing and twisting mo<br>381 mm (15 in.) mark?      | otion applied until cylinder fil                | led to               |         |
| 27. Liquid raised and mainta irrigator is being withdra    | ined at 381 mm (15 in.) mark wn?                | while                |         |
| 28. Liquid at the 381 mm (15                               | 5 in.) mark?                                    |                      |         |
| 29. Contents let stand 20 mir                              | nutes $\pm 15$ seconds?                         |                      |         |
| 30. Timing started immediate                               | ely after withdrawal of irrigat                 | or?                  |         |
| 31. No vibration or disturban                              | nce of the sample?                              |                      |         |
| 32. Readings taken at 20 min definite line appears?        | nutes or up to 30 minutes, whe                  | en a                 |         |
| 33. Clay level correctly read,                             | , rounded, and recorded?                        |                      |         |
| 34. Weighted foot assembly mouth of cylinder?              | lowered into cylinder without                   | hitting              |         |
| 35. Sand level correctly read                              | , rounded, and recorded?                        |                      |         |
| 36. Calculations performed c                               | correctly?                                      |                      |         |
| Comments: First attem                                      | pt: Pass Fail                                   | Second attempt: Pass | Fail    |

| Examiner Signature |                | WAQTC #:          |
|--------------------|----------------|-------------------|
| 35_T176_pr_09      | Aggregate 8-14 | Pub. October 2021 |

WSDOT Materials Manual M 46-01.40 January 2022

# WSDOT Errata to FOP for AASHTO T 180

# *Moisture-Density Relations of Soils Using a 4.54 KG (10 LB) Rammer and a 457 MM (18 IN.) Drop*

WAQTC FOP for AASHTO T 180 has been adopted by WSDOT with the following changes:

# Scope

Replace with below:

This procedure covers the determination of the moisture-density relations of soils and soilaggregate mixtures in accordance with two similar test methods:

AASHTO T 99-19: Methods A, B, C, and D

AASHTO T 180-20: Methods A, B, C, and D

This test method applies to soil mixtures having **30** percent or less retained on the 4.75 mm (No. 4) sieve for methods A or B, or, 30 percent or less retained on the 19 mm (¾ in) with methods C or D. The retained material is defined as oversize (coarse) material. If no minimum percentage is specified, 5 percent will be used. Samples that contain oversize (coarse) material that meet percent retained criteria should be corrected by using *Annex A*, *Correction of Maximum Dry Density and Optimum Moisture for Oversized Particles*. Samples of soil or soil-aggregate mixture are prepared at several moisture contents and compacted into molds of specified size, using manual or mechanical rammers that deliver a specified quantity of compactive energy. The moist masses of the compacted samples are multiplied by the appropriate factor to determine wet density values. Moisture contents of the compacted and used to obtain the dry density values of the same samples. Maximum dry density and optimum moisture content for the soil or soil-aggregate mixture is determined by plotting the relationship between dry density and moisture content.

T 180

# MOISTURE-DENSITY RELATIONS OF SOILS: USING A 2.5 KG (5.5 LB) RAMMER AND A 305 MM (12 IN.) DROP FOP FOR AASHTO T 99 USING A 4.54 KG (10 LB) RAMMER AND A 457 MM (18 IN.) DROP FOP FOR AASHTO T 180

# Scope

This procedure covers the determination of the moisture-density relations of soils and soilaggregate mixtures in accordance with two similar test methods:

- AASHTO T 99-21: Methods A, B, C, and D
- AASHTO T 180-21: Methods A, B, C, and D

This test method applies to soil mixtures having 40 percent or less retained on the 4.75 mm (No. 4) sieve for methods A or B, or 30 percent or less retained on the 19 mm ( $\frac{3}{4}$  in.) sieve with methods C or D. The retained material is defined as oversize (coarse) material. If no minimum percentage is specified, 5 percent will be used. Samples that contain oversize (coarse) material that meet percent retained criteria should be corrected by using *Annex A*, *Correction of Maximum Dry Density and Optimum Moisture for Oversized Particles*. Samples of soil or soil-aggregate mixture are prepared at several moisture contents and compacted into molds of specified size, using manual or mechanical rammers that deliver a specified quantity of compactive energy. The moist masses of the compacted samples are multiplied by the appropriate factor to determine wet density values. Moisture contents of the compacted samples are determined and used to obtain the dry density values of the same samples. Maximum dry density and optimum moisture content for the soil or soil-aggregate mixture is determined by plotting the relationship between dry density and moisture content.

# Apparatus

- Mold Cylindrical mold made of metal with the dimensions shown in Table 1 or Table 2. If permitted by the agency, the mold may be of the "split" type, consisting of two half-round sections, which can be securely locked in place to form a cylinder. Determine the mold volume according to *Annex B, Standardization of the Mold*.
- Mold assembly Mold, base plate, and a detachable collar.
- Rammer Manually or mechanically operated rammers as detailed in Table 1 or Table 2. A manually operated rammer shall be equipped with a guide sleeve to control the path and height of drop. The guide sleeve shall have at least four vent holes no smaller than 9.5 mm (3/8 in.) in diameter, spaced approximately 90 degrees apart and approximately 19 mm (3/4 in.) from each end. A mechanically operated rammer will uniformly distribute blows over the sample and will be calibrated with several soil types, and be adjusted, if necessary, to give the same moisture-density results as with the manually operated rammer. For additional information concerning calibration, see the FOP for AASHTO T 99 and T 180.

E&B/ID 13-1

- Sample extruder A jack, lever frame, or other device for extruding compacted specimens from the mold quickly and with little disturbance.
- Balance(s) or scale(s) of the capacity and sensitivity required for the procedure used by the agency.

A balance or scale with a capacity of 11.5 kg (25 lb) and a sensitivity of 1 g for obtaining the sample, meeting the requirements of AASHTO M 231, Class G 5.

A balance or scale with a capacity of 2 kg and a sensitivity of 0.1 g is used for moisture content determinations done under both procedures, meeting the requirements of AASHTO M 231, Class G 2.

- Drying apparatus A thermostatically controlled drying oven, capable of maintaining a temperature of 110 ±5°C (230 ±9°F) for drying moisture content samples in accordance with the FOP for AASHTO T 255/T 265.
- Straightedge A steel straightedge at least 250 mm (10 in.) long, with one beveled edge and at least one surface plane within 0.1 percent of its length, used for final trimming.
- Sieve(s) 4.75 mm (No. 4) and/or 19.0 mm (3/4 in.), meeting the requirements of FOP for AASHTO T 27/T 11.
- Mixing tools Miscellaneous tools such as a mixing pan, spoon, trowel, spatula, etc., or a suitable mechanical device, for mixing the sample with water.
- Containers with close-fitting lids to prevent gain or loss of moisture in the sample.

45\_T99\_T180\_short\_21\_errata

E&B/ID 13-2

#### EMBANKMENT AND BASE IN-PLACE DENSITY

#### WAQTC

|                              | Т 99                             | Т 180                            |
|------------------------------|----------------------------------|----------------------------------|
| Mold Volume, m <sup>3</sup>  | Methods A, C: 0.000943 ±0.000014 | Methods A, C: 0.000943 ±0.000014 |
|                              | Methods B, D: 0.002124 ±0.000025 | Methods B, D: 0.002124 ±0.000025 |
| Mold Diameter, mm            | Methods A, C: 101.60 ±0.40       | Methods A, C: 101.60 ±0.4        |
|                              | Methods B, D: 152.40 ±0.70       | Methods B, D: 152.40 ±0.70       |
| Mold Height, mm              | $116.40 \pm 0.50$                | 116.40 ±0.50                     |
| Detachable Collar Height, mm | $50.80 \pm 0.64$                 | $50.80 \pm 0.64$                 |
| Rammer Diameter, mm          | $50.80 \pm 0.25$                 | 50.80 ±0.25                      |
| Rammer Mass, kg              | $2.495 \pm 0.009$                | $4.536 \pm 0.009$                |
| Rammer Drop, mm              | 305                              | 457                              |
| Layers                       | 3                                | 5                                |
| Blows per Layer              | Methods A, C: 25                 | Methods A, C: 25                 |
|                              | Methods B, D: 56                 | Methods B, D: 56                 |
| Material Size, mm            | Methods A, B: 4.75 minus         | Methods A, B: 4.75 minus         |
|                              | Methods C, D: 19.0 minus         | Methods C, D: 19.0 minus         |
| Test Sample Size, kg         | Method A: 3                      | Method B: 7                      |
|                              | Method C: 5 (1)                  | Method D: 11(1)                  |
| Energy, kN-m/m <sup>3</sup>  | 592                              | 2,693                            |

| Table 1                                                 |  |  |
|---------------------------------------------------------|--|--|
| Comparison of Apparatus, Sample, and Procedure – Metric |  |  |

(1) This may not be a large enough sample depending on your nominal maximum size for moisture content samples.

|                               | Т 99                          | T 180                         |
|-------------------------------|-------------------------------|-------------------------------|
| Mold Volume, ft <sup>3</sup>  | Methods A, C: 0.0333 ±0.0005  | Methods A, C: 0.0333 ±0.0005  |
|                               | Methods B, D: 0.07500 ±0.0009 | Methods B, D: 0.07500 ±0.0009 |
| Mold Diameter, in.            | Methods A, C: 4.000 ±0.016    | Methods A, C: 4.000 ±0.016    |
|                               | Methods B, D: 6.000 ±0.026    | Methods B, D: 6.000 ±0.026    |
| Mold Height, in.              | $4.584 \pm 0.018$             | 4.584 ±0.018                  |
| Detachable Collar Height, in. | 2.000 ±0.025                  | 2.000 ±0.025                  |
| Rammer Diameter, in.          | $2.000 \pm 0.025$             | 2.000 ±0.025                  |
| Rammer Mass, lb               | 5.5 ±0.02                     | 10 ±0.02                      |
| Rammer Drop, in.              | 12                            | 18                            |
| Layers                        | 3                             | 5                             |
| Blows per Layer               | Methods A, C: 25              | Methods A, C: 25              |
|                               | Methods B, D: 56              | Methods B, D: 56              |
| Material Size, in.            | Methods A, B: No. 4 minus     | Methods A, B: No.4 minus      |
|                               | Methods C, D: 3/4 minus       | Methods C, D: 3/4 minus       |
| Test Sample Size, lb          | Method A: 7                   | Method B: 16                  |
| -                             | Method C: $12_{(1)}$          | Method D: $25_{(1)}$          |
| Energy, lb-ft/ft <sup>3</sup> | 12,375                        | 56,250                        |

 Table 2

 Comparison of Apparatus, Sample, and Procedure – English

(1) This may not be a large enough sample depending on your nominal maximum size for moisture content samples.

# Sample

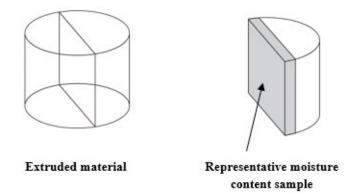
If the sample is damp, dry it until it becomes friable under a trowel. Drying may be in air or by use of a drying apparatus maintained at a temperature not exceeding 60°C (140°F). Thoroughly break up aggregations in a manner that avoids reducing the natural size of individual particles.

Obtain a representative test sample of the mass required by the agency by passing the material through the sieve required by the agency. See Table 1 or Table 2 for test sample mass and material size requirements.

In instances where the material is prone to degradation, i.e., granular material, a compaction sample with differing moisture contents should be prepared for each point.

If the sample is plastic (clay types), it should stand for a minimum of 12 hours after the addition of water to allow the moisture to be absorbed. In this case, several samples at different moisture contents should be prepared, put in sealed containers, and tested the next day.

*Note 1:* Both T 99 and T 180 have four methods (A, B, C, D) that require different masses and employ different sieves.


# Procedure

During compaction, rest the mold firmly on a dense, uniform, rigid, and stable foundation, or base. This base shall remain stationary during the compaction process.

- 1. Determine the mass of the clean, dry mold. Include the base plate but exclude the extension collar. Record the mass to the nearest 1 g (0.005 lb).
- 2. Thoroughly mix the selected representative sample with sufficient water to dampen it to approximately 4 to 8 percentage points below optimum moisture content. For many materials, this condition can be identified by forming a cast by hand.
  - a. Prepare individual samples of plastic or degradable material, increasing moisture contents 1 to 2 percent for each point.
  - b. Allow samples of plastic soil to stand for 12 hrs.
- 3. Form a specimen by compacting the prepared soil in the mold assembly in approximately equal layers. For each layer:
  - a. Spread the loose material uniformly in the mold.
  - *Note 2:* It is recommended to cover the remaining material with a non-absorbent sheet or damp cloth to minimize loss of moisture.
  - b. Lightly tamp the loose material with the manual rammer or other similar device, this establishes a firm surface.
  - c. Compact each layer with uniformly distributed blows from the rammer. See Table 1 for mold size, number of layers, number of blows, and rammer specification for the various test methods. Use the method specified by the agency.
  - d. Trim down material that has not been compacted and remains adjacent to the walls of the mold and extends above the compacted surface.

| 45_T99_T180_short_21_errata | E&B/ID 13-4 | Pub. October 2021 |
|-----------------------------|-------------|-------------------|
|-----------------------------|-------------|-------------------|

- 4. Remove the extension collar. Avoid shearing off the sample below the top of the mold. The material compacted in the mold should not be over 6 mm (1/4 in.) above the top of the mold once the collar has been removed.
- 5. Trim the compacted soil even with the top of the mold with the beveled side of the straightedge.
- 6. Clean soil from exterior of the mold and base plate.
- 7. Determine and record the mass of the mold, base plate, and wet soil to the nearest 1 g (0.005 lb) or better.
- 8. Determine and record the wet mass (M<sub>w</sub>) of the sample by subtracting the mass in Step 1 from the mass in Step 7.
- 9. Calculate the wet density ( $\rho_w$ ), in kg/m<sup>3</sup> (lb/ft<sup>3</sup>), by dividing the wet mass by the measured volume ( $V_m$ ).
- 10. Extrude the material from the mold. For soils and soil-aggregate mixtures, slice vertically through the center and remove one of the cut faces for a representative moisture content sample. For granular materials, a vertical face will not exist. Take a representative sample ensuring that all layers are represented. This sample must meet the sample size requirements of the test method used to determine moisture content.



- *Note 3:* When developing a curve for free-draining soils such as uniform sands and gravels, where seepage occurs at the bottom of the mold and base plate, taking a representative moisture content from the mixing bowl may be preferred in order to determine the amount of moisture available for compaction.
- 11. Determine and record the moisture content of the sample in accordance with the FOP for AASHTO T 255 / T 265.
- 12. If the material is degradable or plastic, return to Step 3 using a prepared individual sample. If not, continue with Steps 13 through 15.
- 13. Thoroughly break up the remaining portion of the molded specimen until it will again pass through the sieve, as judged by eye, and add to the remaining portion of the sample being tested.
- 14. Add sufficient water to increase the moisture content of the remaining soil by 1 to 2 percentage points and repeat steps 3 through 11.
- 45\_T99\_T180\_short\_21\_errata

E&B/ID 13-5

EMBANKMENT AND BASE IN-PLACE DENSITY

15. Continue determinations until there is either a decrease or no change in the wet mass. There will be a minimum of three points on the dry side of the curve and two points on the wet side. For non-cohesive, drainable soils, one point on the wet side is sufficient.

WAQTC

# Calculations

#### Wet Density

$$\rho_w = \frac{M_w}{V_m}$$

Where:

| $\rho_{\rm W}$ | = | wet density, kg/m <sup>3</sup> (lb/ft <sup>3</sup> ) |
|----------------|---|------------------------------------------------------|
| $M_{\rm w}$    | = | wet mass                                             |
| $V_{m}$        | = | volume of the mold, Annex B                          |

**Dry Density** 

$$\rho_d = \left(\frac{\rho_w}{w+100}\right) \times 100 \quad or \quad \rho_d = \frac{\rho_w}{\left(\frac{w}{100}\right) + 1}$$

Where:

 $\rho_d = dry density, kg/m^3 (lb/ft^3)$  w = moisture content, as a percentage

# Example for 4-inch mold, Methods A or C

| Wet mass, Mw                                | = | 1.928 kg (4.25 lb)                           |
|---------------------------------------------|---|----------------------------------------------|
| Moisture content, w                         | = | 11.3%                                        |
| Measured volume of the mold, V <sub>m</sub> | = | $0.000946 \text{ m}^3 (0.0334 \text{ ft}^3)$ |

# Wet Density

$$\rho_w = \frac{1.928 \ kg}{0.000946 \ m^3} = 2038 \ kg/m^3 \quad \rho_w = \frac{4.25 \ lb}{0.0334 \ ft^3} = 127.2 \ lb/ft^3$$

| 45_T99_T180_short_21_errata | E&B/ID 13-6 | Pub. October 2021 |
|-----------------------------|-------------|-------------------|
|                             |             |                   |

EMBANKMENT AND BASE IN-PLACE DENSITY

# WAQTC

FOP AASHTO T 99 / T 180 (21)

# **Dry Density**

$$\rho_d = \left(\frac{2038 \, kg/m^3}{11.3 + 100}\right) \times 100 = 1831 \ kg/m^3 \ \rho_d = \left(\frac{127.2 \ lb/ft^3}{11.3 + 100}\right) \times 100 = 114.3 \ lb/ft^3$$

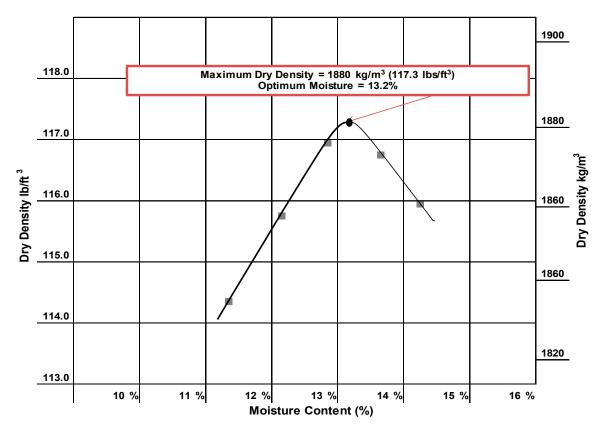
Or

$$\rho_d = \left(\frac{2038 \, kg/m^3}{\frac{11.3}{100} + 1}\right) = 1831 \, kg/m^3 \quad \rho_d = \left(\frac{127.2 \, lb/ft^3}{\frac{11.3}{100} + 1}\right) = 114.3 \, lb/ft^3$$

# **Moisture-Density Curve Development**

When dry density is plotted on the vertical axis versus moisture content on the horizontal axis and the points are connected with a smooth line, a moisture-density curve is developed. The coordinates of the peak of the curve are the maximum dry density, or just "maximum density," and the "optimum moisture content" of the soil.

#### Example


Given the following dry density and corresponding moisture content values develop a moisture-density relations curve and determine maximum dry density and optimum moisture content.

| Dry Density       |                    | Moisture Content, % |
|-------------------|--------------------|---------------------|
| kg/m <sup>3</sup> | lb/ft <sup>3</sup> |                     |
| 1831              | 114.3              | 11.3                |
| 1853              | 115.7              | 12.1                |
| 1873              | 116.9              | 12.8                |
| 1869              | 116.7              | 13.6                |
| 1857              | 115.9              | 14.2                |

45\_T99\_T180\_short\_21\_errata

E&B/ID 13-7

EMBANKMENT AND BASE IN-PLACE DENSITY



WAQTC

In this case, the curve has its peak at:

Maximum dry density =  $1880 \text{ kg/m}^3 (117.3 \text{ lb/ft}^3)$ Optimum moisture content = 13.2%

Note that both values are approximate since they are based on sketching the curve to fit the points.

# Report

- Results on forms approved by the agency
- Sample ID
- Maximum dry density to the nearest 1 kg/m<sup>3</sup> (0.1 lb/ft<sup>3</sup>)
- Optimum moisture content to the nearest 0.1 percent

45\_T99\_T180\_short\_21\_errata

E&B/ID 13-8

Pub. October 2021

Page 10 of 22

FOP AASHTO T 99 / T 180 (21)

# ANNEX A CORRECTION OF MAXIMUM DRY DENSITY AND OPTIMUM MOISTURE FOR OVERSIZED PARTICLES

(Mandatory Information)

This section corrects the maximum dry density and moisture content of the material retained on the 4.75 mm (No. 4) sieve, Methods A and B; or the material retained on the 19 mm ( $\frac{3}{4}$  in.) sieve, Methods C and D. The maximum dry density, corrected for oversized particles and total moisture content, are compared with the field-dry density and field moisture content.

This correction can be applied to the sample on which the maximum dry density is performed. A correction may not be practical for soils with only a small percentage of oversize material. The agency shall specify a minimum percentage below which the method is not needed. If not specified, this method applies when more than 5 percent by weight of oversize particles is present.

Bulk specific gravity ( $G_{sb}$ ) of the oversized particles is required to determine the corrected maximum dry density. Use the bulk specific gravity as determined using the FOP for AASHTO T 85 in the calculations. For construction activities, an agency established value or specific gravity of 2.600 may be used.

This correction can also be applied to the sample obtained from the field while performing in-place density.

# Procedure

- 1. Use the sample from this procedure or a sample obtained according to the FOP for AASHTO T 310.
- 2. Sieve the sample on the 4.75 mm (No. 4) sieve for Methods A and B or the 19 mm (<sup>3</sup>/<sub>4</sub> in.) sieve, Methods C and D.
- 3. Determine the dry mass of the oversized and fine fractions ( $M_{DC}$  and  $M_{DF}$ ) by one of the following:
  - a. Dry the fractions, fine and oversized, in air or by use of a drying apparatus that is maintained at a temperature not exceeding 60°C (140°F).
  - b. Calculate the dry masses using the moisture samples.

To determine the dry mass of the fractions using moisture samples.

- 1. Determine the moist mass of both fractions, fine  $(M_{Mf})$  and oversized  $(M_{Mc})$ :
- 2. Obtain moisture samples from the fine and oversized material.
- 3. Determine the moisture content of the fine particles  $(MC_f)$  and oversized particles  $(MC_C)$  of the material by FOP for AASHTO T 255/T 265 or agency approved method.
- 4. Calculate the dry mass of the oversize and fine particles.

45\_T99\_T180\_short\_21\_errata

E&B/ID 13-9

EMBANKMENT AND BASE IN-PLACE DENSITY

$$M_D = \frac{M_m}{1 + \text{MC}}$$

Where:

 $M_D$  = mass of dry material (fine or oversize particles)

M<sub>m</sub> = mass of moist material (fine or oversize particles)

MC = moisture content of respective fine or oversized, expressed as a decimal

5. Calculate the percentage of the fine (P<sub>f</sub>) and oversized (P<sub>c</sub>) particles by dry weight of the total sample as follows: See Note 2.

 $P_f = \frac{100 \times M_{DF}}{M_{DF} + M_{DC}} \qquad \frac{100 \times 15.4 \, lb}{15.4 \, lbs + 5.7 \, lb} = 73\% \qquad \frac{100 \times 6.985 \, kg}{6.985 \, kg + 2.585 \, kg} = 73\%$ 

And

$$P_c = \frac{100 \times M_{DC}}{M_{DF} + M_{DC}} \qquad \frac{100 \times 5.7 \, lb}{15.4 \, lbs + 5.7 \, lb} = 27\% \qquad \frac{100 \times 2.585 \, kg}{6.985 \, kg + 2.585 \, kg} = 27\%$$

Or for **P**<sub>c</sub>:

$$P_{c} = 100 - P_{f}$$

Where:

 $P_{f}$  = percent of fine particles, of sieve used, by weight

 $P_c$  = percent of oversize particles, of sieve used, by weight

 $M_{DF}$  = mass of dry fine particles

 $M_{DC}$  = mass of dry oversize particles

45\_T99\_T180\_short\_21\_errata

E&B/ID 13-10

### WAQTC

FOP AASHTO T 99 / T 180 (21)

### **Optimum Moisture Correction Equation**

1. Calculate the corrected moisture content as follows:

$$MC_T = \frac{\left(MC_F \times P_f\right) + \left(MC_c \times P_c\right)}{100} \qquad \frac{\left(13.2\% \times 73.0\%\right) + \left(2.1\% \times 27.0\%\right)}{100} = 10.2\%$$

 $MC_T$  = corrected moisture content of combined fines and oversized particles, expressed as a % moisture

 $MC_F$  = moisture content of fine particles, as a % moisture

MC<sub>C</sub> = moisture content of oversized particles, as a % moisture

- *Note 1:* Moisture content of oversize material can be assumed to be two (2) percent for most construction applications.
- *Note 2:* In some field applications agencies will allow the percentages of oversize and fine materials to be determined with the materials in the wet state.

## **Density Correction Equation**

2. Calculate the corrected dry density  $(\rho_d)$  of the total sample (combined fine and oversized particles) as follows:

$$\rho_d = \frac{100\%}{\left[ \left( \frac{P_f}{\rho_f} \right) + \left( \frac{P_c}{k} \right) \right]}$$

Where:

- $\rho_d = \text{corrected total dry density (combined fine and oversized particles)}$   $kg/m^3 (lb/ft^3)$
- $\rho_f$  = dry density of the fine particles kg/m<sup>3</sup> (lb/ft<sup>3</sup>), determined in the lab
- $P_c$  = percent of dry oversize particles, of sieve used, by weight.
- $P_f$  = percent of dry fine particles, of sieve used, by weight.
- $k = Metric: 1,000 * Bulk Specific Gravity (G_{sb}) (oven dry basis) of coarse particles (kg/m<sup>3</sup>).$
- $k = \text{English: 62.4 * Bulk Specific Gravity (G_{sb}) (oven dry basis)}$ of coarse particles (lb/ft<sup>3</sup>)

*Note 3:* If the specific gravity is known, then this value will be used in the calculation. For most construction activities the specific gravity for aggregate may be assumed to be 2.600.

45\_T99\_T180\_short\_21\_errata

E&B/ID 13-11

EMBANKMENT AND BASE IN-PLACE DENSITY

### Calculation

## Example

• Metric:

| Maximum laboratory dry density (pf):  | 1880 kg/m <sup>3</sup>                 |
|---------------------------------------|----------------------------------------|
| Percent coarse particles (Pc):        | 27%                                    |
| Percent fine particles (Pf):          | 73%                                    |
| Mass per volume coarse particles (k): | $(2.697) (1000) = 2697 \text{ kg/m}^3$ |

$$\rho_{d} = \frac{100\%}{\left[\left(\frac{P_{f}}{\rho_{f}}\right) + \left(\frac{P_{c}}{k}\right)\right]}$$

$$\rho_d = \frac{100\%}{\left[ \left( \frac{73\%}{1880 \, kg/m^3} \right) + \left( \frac{27\%}{2697 \, kg/m^3} \right) \right]}$$

 $\rho_d = \frac{100\%}{[0.03883 \, kg/m^3 + 0.01001 \, kg/m^3]}$ 

$$\rho_d = 2047.5 \, kg/m^3 \, report \, 2048 \, kg/m^3$$

45\_T99\_T180\_short\_21\_errata

## EMBANKMENT AND BASE IN-PLACE DENSITY

### WAQTC

### FOP AASHTO T 99 / T 180 (21)

English:

| Maximum laboratory dry density (pf):      | 117.3 lb/ft <sup>3</sup> |
|-------------------------------------------|--------------------------|
| Percent coarse particles (Pc):            | 27%                      |
| Percent fine particles (P <sub>f</sub> ): | 73%                      |

Mass per volume of coarse particles (k):  $(2.697)(62.4) = 168.3 \text{ lb/ft}^3$ 

$$\rho_{d} = \frac{100\%}{\left[\left(\frac{P_{f}}{\rho_{f}}\right) + \left(\frac{P_{c}}{k}\right)\right]}$$

$$\rho = \frac{100\%}{\left[ \left( \frac{73\%}{117.3 \, lb/ft^3} \right) + \left( \frac{27\%}{168.3 \, lb/ft^3} \right) \right]}$$

$$\rho_d = \frac{100\%}{[0.6223 \ lb/ft^3 + 0.1604 \ lb/ft^3]}$$

 $\rho_d = \frac{100\%}{0.7827 \ lb/ft^3}$ 

$$\rho_d = 127.76 \ lb/ft^3 \ Report \ 127.8 \ lb/ft^3$$

### Report

- On forms approved by the agency
- Sample ID
- Corrected maximum dry density to the nearest 1 kg/m<sup>3</sup> (0.1 lb/ft<sup>3</sup>)
- Corrected optimum moisture to the nearest 0.1 percent

E&B/ID 13-13

Pub. October 2021

## ANNEX B STANDARDIZATION OF THE MOLD

(Mandatory Information)

Standardization is a critical step to ensure accurate test results when using this apparatus. Failure to perform the standardization procedure as described herein will produce inaccurate or unreliable test results.

## Apparatus

- Mold and base plate
- Balance or scale Accurate to within 45 g (0.1 lb) or 0.3 percent of the test load, whichever is greater, at any point within the range of use.
- Cover plate A piece of plate glass, at least 6 mm (1/4 in.) thick and at least 25 mm (1 in.) larger than the diameter of the mold.
- Thermometers Standardized liquid-in-glass, or electronic digital total immersion type, accurate to 0.5°C (1°F)

### Procedure

- 1. Create a watertight seal between the mold and base plate.
- 2. Determine and record the mass of the dry sealed mold, base plate, and cover plate.
- 3. Fill the mold with water at a temperature between 16°C and 29°C (60°F and 85°F) and cover with the cover plate in such a way as to eliminate bubbles and excess water.
- 4. Wipe the outside of the mold, base plate, and cover plate dry, being careful not to lose any water from the mold.
- 5. Determine and record the mass of the filled mold, base plate, cover plate, and water.
- 6. Determine and record the mass of the water in the mold by subtracting the mass in Step 2 from the mass in Step 5.
- 7. Measure the temperature of the water and determine its density from Table B1, interpolating, as necessary.
- 8. Calculate the volume of the mold, V<sub>m</sub>, by dividing the mass of the water in the mold by the density of the water at the measured temperature.

45\_T99\_T180\_short\_21\_errata

E&B/ID 13-14

# EMBANKMENT AND BASE IN-PLACE DENSITY

## WAQTC

## Calculations

$$V_m = \frac{M}{\rho_{water}}$$

Where:

| $V_{m}$ | =   | volume of the mold                           |
|---------|-----|----------------------------------------------|
| М       | =   | mass of water in the mold                    |
| ρwate   | r = | density of water at the measured temperature |

Example

| Mass of water in mold   | = | 0.94367 kg (2.0800 lb)                                |
|-------------------------|---|-------------------------------------------------------|
| pwater at 23°C (73.4°F) | = | 997.54 kg/m <sup>3</sup> (62.274 lb/ft <sup>3</sup> ) |

$$V_m = \frac{0.94367 \ kg}{997.54 \ kg/m^3} = 0.000946 \ m^3 \qquad V_m = \frac{2.0800 \ lb}{62.274 \ lb/ft^3} = 0.0334 \ ft^3$$

| 15°C to 30°C |        |                   |                       |      |        |                   |                       |
|--------------|--------|-------------------|-----------------------|------|--------|-------------------|-----------------------|
| °C           | (°F)   | kg/m <sup>3</sup> | (lb/ft <sup>3</sup> ) | °C   | (°F)   | kg/m <sup>3</sup> | (lb/ft <sup>3</sup> ) |
| 15           | (59.0) | 999.10            | (62.372)              | 23   | (73.4) | 997.54            | (62.274)              |
| 15.6         | (60.0) | 999.01            | (62.366)              | 23.9 | (75.0) | 997.32            | (62.261)              |
| 16           | (60.8) | 998.94            | (62.361)              | 24   | (75.2) | 997.29            | (62.259)              |
| 17           | (62.6) | 998.77            | (62.350)              | 25   | (77.0) | 997.03            | (62.243)              |
| 18           | (64.4) | 998.60            | (62.340)              | 26   | (78.8) | 996.77            | (62.227)              |
| 18.3         | (65.0) | 998.54            | (62.336)              | 26.7 | (80.0) | 996.59            | (62.216)              |
| 19           | (66.2) | 998.40            | (62.328)              | 27   | (80.6) | 996.50            | (62.209)              |
| 20           | (68.0) | 998.20            | (62.315)              | 28   | (82.4) | 996.23            | (62.192)              |
| 21           | (69.8) | 997.99            | (62.302)              | 29   | (84.2) | 995.95            | (62.175)              |
| 21.1         | (70.0) | 997.97            | (62.301)              | 29.4 | (85.0) | 995.83            | (62.166)              |
| 22           | (71.6) | 997.77            | (62.288)              | 30   | (86.0) | 995.65            | (62.156)              |

| Table B1           |
|--------------------|
| Unit Mass of Water |
| 1.000 . 0000       |

 $45\_T99\_T180\_short\_21\_errata$ 

E&B/ID 13-15

Pub. October 2021

1

### Report

- Mold ID
- Date Standardized
- Temperature of the water
- Volume,  $V_m$ , of the mold to the nearest 0.000001 m<sup>3</sup> (0.0001 ft<sup>3</sup>)

45\_T99\_T180\_short\_21\_errata

E&B/ID 13-16

### WAQTC

### PERFORMANCE EXAM CHECKLIST

# MOISTURE-DENSITY RELATION OF SOILS FOP FOR AASHTO T 180

| Par | tici | ipant NameExam Date                                                                                                                                           | e       |         |
|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|
| Rec | ord  | l the symbols "P" for passing or "F" for failing on each step of the checkl                                                                                   | list.   |         |
| Pro | oce  | dure Element                                                                                                                                                  | Trial 1 | Trial 2 |
| 1.  |      | damp, sample dried in air or drying apparatus, not exceeding °C (140°F)?                                                                                      |         |         |
| 2.  | sie  | mple broken up and an adequate amount sieved over the appropriate eve (4.75 mm / No. 4 or 19.0 mm / 3/4 in.) to determine oversize (coars rticle) percentage? | se      |         |
| 3.  | Sa   | mple passing the sieve has appropriate mass?                                                                                                                  |         |         |
| 4.  | Ifı  | material is degradable:                                                                                                                                       |         |         |
|     | a.   | Multiple samples mixed with water varying moisture content<br>by 1 to 2 percent, bracketing the optimum moisture content?                                     |         |         |
| 5.  | Ifs  | soil is plastic (clay types):                                                                                                                                 |         |         |
|     | a.   | Multiple samples mixed with water varying moisture content by 1 to 2 percent, bracketing the optimum moisture content?                                        |         |         |
|     | b.   | Samples placed in covered containers and allowed to stand for at leas 12 hours?                                                                               | st      |         |
| 6.  |      | mple determined to be 4 to 8 percent below expected optimum pisture content?                                                                                  |         |         |
| 7.  | De   | etermine mass of clean, dry mold without collar to nearest 1 g (0.005 ll                                                                                      | o.)?    |         |
| 8.  | Mo   | old placed on rigid and stable foundation?                                                                                                                    |         |         |
| 9.  |      | yer of soil (approximately one fifth compacted depth) placed in mold<br>th collar attached, loose material lightly tamped?                                    |         |         |
| 10. | So   | il compacted with appropriate number of blows (25 or 56)?                                                                                                     |         |         |
| 11. | Ma   | aterial adhering to the inside of the mold trimmed?                                                                                                           |         |         |
| 12. |      | yer of soil (approximately two fifths compacted depth) placed in mold<br>th collar attached, loose material lightly tamped?                                   | l       |         |
| 13. | So   | il compacted with appropriate number of blows (25 or 56)?                                                                                                     |         |         |
| 14. | Ma   | aterial adhering to the inside of the mold trimmed?                                                                                                           |         |         |
| 15. |      | yer of soil (approximately three fifths compacted depth) placed in mol<br>th collar attached, loose material lightly tamped?                                  | d       |         |
| 16. | So   | il compacted with appropriate number of blows (25 or 56)?                                                                                                     |         |         |
|     |      |                                                                                                                                                               |         |         |

### **OVER**

| 21_T180_pr_18 | E&B/ID 4-27 | Pub. October 2021 |
|---------------|-------------|-------------------|
|               |             |                   |

### T 180

### EMBANKMENT AND BASE IN-PLACE DENSITY

## FOP AASHTO T 99/T 180 (18)

| Pro | ocedure Element                                                                                                                                      | Trial 1 | Trial 2 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|
| 17. | Material adhering to the inside of the mold trimmed?                                                                                                 |         |         |
| 18. | Layer of soil (approximately four fifths compacted depth) placed in mold with collar attached, loose material lightly tamped?                        |         |         |
| 19. | Soil compacted with appropriate number of blows (25 or 56)?                                                                                          |         |         |
| 20. | Material adhering to the inside of the mold trimmed?                                                                                                 |         |         |
| 21. | Mold filled with soil such that compacted soil will be above the mold, loose material lightly tamped?                                                |         |         |
| 22. | Soil compacted with appropriate number of blows (25 or 56)?                                                                                          |         |         |
| 23. | Collar removed without shearing off sample?                                                                                                          |         |         |
| 24. | Approximately 6 mm (1/4 in.) of compacted material above the top of the mold (without the collar)?                                                   |         |         |
| 25. | Soil trimmed to top of mold with the beveled side of the straightedge?                                                                               |         |         |
| 26. | Remove all soil from exterior surface of mold and base plate?                                                                                        |         |         |
| 27. | Mass of mold and contents determined to appropriate precision (1 g)?                                                                                 |         |         |
| 28. | Wet density calculated from the wet mass?                                                                                                            |         |         |
| 29. | Soil removed from mold using a sample extruder if needed?                                                                                            |         |         |
| 30. | Soil sliced vertically through center (non-granular material)?                                                                                       |         |         |
| 31. | Moisture sample removed ensuring all layers are represented?                                                                                         |         |         |
| 32. | Moist mass determined immediately to 0.1 g?                                                                                                          |         |         |
| 33. | Moisture sample mass of correct size?                                                                                                                |         |         |
| 34. | Sample dried, and water content determined according to the FOP for T 255/T 265?                                                                     |         |         |
| 35. | Remainder of material from mold broken up until it will pass through<br>the sieve, as judged by eye, and added to remainder of original test sample? |         |         |
| 36. | Water added to increase moisture content of the remaining sample<br>in approximately 1 to 2 percent increments?                                      |         |         |
| 37. | Steps 2 through 20 repeated for each increment of water added?                                                                                       |         |         |
| 38. | Process continued until wet density either decreases or stabilizes?                                                                                  |         |         |
| 39. | Moisture content and dry density calculated for each sample?                                                                                         |         |         |
| 40. | Dry density plotted on vertical axis, moisture content plotted on horizontal axis, and points connected with a smooth curve?                         |         |         |
| 41. | Moisture content at peak of curve recorded as optimum water content<br>and recorded to nearest 0.1 percent?                                          |         |         |
| 42. | Dry density at optimum moisture content reported as maximum density to nearest 1 kg/m <sup>3</sup> (0.1 lb/ft <sup>3</sup> )?                        |         |         |
|     | OVER                                                                                                                                                 |         |         |

WAQTC

21\_T180\_pr\_18

E&B/ID 4-28

| EMBANKMENT AND BASE<br>IN-PLACE DENSITY                             | WAQTC      | FOP AASHTO T 99/T 180 (18) |
|---------------------------------------------------------------------|------------|----------------------------|
| <b>Procedure Element</b><br>43. Corrected for coarse particles if a | pplicable? | Trial 1 Trial 2            |
| Comments: First attempt: H                                          | PassFail   | Second attempt: PassFail   |
|                                                                     |            |                            |
|                                                                     |            |                            |
| Examiner Signature                                                  |            | WAOTC #:                   |

E&B/ID 4-29

EMBANKMENT AND BASE IN-PLACE DENSITY

WAQTC

21\_T180\_pr\_18

E&B/ID 4-30

### THEORETICAL MAXIMUM SPECIFIC GRAVITY (*Gmm*) AND DENSITY OF ASPHALT MIXTURES FOP FOR AASHTO T 209

### Scope

This procedure covers the determination of the maximum specific gravity  $(G_{mm})$  of uncompacted asphalt mixtures in accordance with AASHTO T 209-20. Two methods using different containers – bowl and pycnometer / volumetric flask– are covered.

Specimens prepared in the laboratory shall be cured according to agency standards.

### Apparatus

- Balance or scale: 10,000 g capacity, readable to 0.1 g, meeting AASHTO M 231, Class G2
- Container: A glass, metal, or plastic bowl, pycnometer or volumetric flask between 2000 and 10,000 mL as required by the minimum sample size requirements in Table 1 sample and capable of withstanding full vacuum applied
- Pycnometer / volumetric flask cover: A glass plate or a metal or plastic cover with a vented opening
- Vacuum lid: A transparent lid with a suitable vacuum connection, with a vacuum opening to be covered with a fine wire mesh
- Vacuum pump or water aspirator: Capable of evacuating air from the container to a residual pressure of 4.0 kPa (30 mm Hg)
- Vacuum measurement device: Residual pressure manometer or vacuum gauge, capable of measuring residual pressure down to 4.0 kPa (30 mm Hg) or less and accurate to 0.1 kPa (1 mm Hg)
- Manometer or vacuum gauge: Capable of measuring the vacuum being applied at the source of the vacuum
- Water bath: A constant-temperature water bath (optional for Pycnometer or Volumetric Flask Method)
- Thermometers: Thermometric devices accurate to 0.5°C (1°F)
- Bleeder valve to adjust vacuum
- Automatic vacuum control unit (optional)
- Timer
- Towel

Asphalt 17-1

WAQTC

## Standardization

Use a container that has been standardized according to Annex A. The container shall be standardized periodically in conformance with procedures established by the agency.

## **Test Sample Preparation**

- 1. Obtain samples in accordance with the FOP for AASHTO R 97 and reduce according to the FOP for AASHTO R 47.
- 2. Test sample size shall conform to the requirements of Table 1. Samples larger than the capacity of the container may be tested in two or more increments. Results will be combined by calculating the weighted average (G<sub>mm (avg)</sub>.). If the increments have a specific gravity difference greater than 0.014, the test must be re-run.

| Nominal Maximum*<br>Aggregate Size<br>mm (in.) | Minimum<br>Mass<br>g |
|------------------------------------------------|----------------------|
| 37.5 or greater $(1\frac{1}{2})$               | 4000                 |
| 19 to 25 (3/4 to 1)                            | 2500                 |
| 12.5 or smaller $(1/2)$                        | 1500                 |

Table 1Test Sample Size for G<sub>mm</sub>

\*Nominal maximum size: One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained.

## Procedure – General

Two procedures – bowl and pycnometer / volumetric flask – are covered. The first 11 steps are the same for both.

- 1. Separate the particles of the sample, taking care not to fracture the mineral particles, so that the particles of the fine aggregate portion are not larger than 6.3 mm (1/4 in.). If the mixture is not sufficiently soft to be separated manually, place it in a large flat pan and warm in an oven only until it is pliable enough for separation.
- 2. Cool the sample to room temperature.
- 3. Determine and record the mass of the dry container to the nearest 0.1 g.
- 4. Place the sample in the container.
- 5. Determine and record the mass of the dry container and sample to the nearest 0.1 g.
- 6. Determine and record the mass of the sample by subtracting the mass determined in Step 3 from the mass determined in Step 5. Designate this mass as "A."
- 7. Add sufficient water at approximately 25° C (77° F) to cover the sample by about 25 mm (1 in.).
- *Note 1:* The release of entrapped air may be facilitated by the addition of a wetting agent. Check with the agency to see if this is permitted and, if it is, for a recommended agent.

49 T209 short 20

Asphalt 17-2

- FOP AASHTO T 209 (20)
- 8. Place the lid on the container and attach the vacuum line. To ensure a proper seal between the container and the lid, wet the O-ring or use a petroleum gel.
- 9. Remove entrapped air by subjecting the sample to a partial vacuum of 3.7 ±0.3 kPa (27.5 ±2.5 mm Hg) residual pressure for 15 ±2 minutes.
- 10. Agitate the container and sample, either continuously by mechanical device or manually by vigorous shaking, at 2-minute intervals. This agitation facilitates the removal of air.
- 11. Release the vacuum. Increase the pressure to atmospheric pressure in 10 to 15 seconds if the vacuum release is not automated. Turn off the vacuum pump and remove the lid. When performing the pycnometer / volumetric flask method, complete steps 12B through 16B within 10 ±1 minute.

### Procedure – Bowl

- 12A. Fill the water bath to overflow level with water at  $25 \pm 1^{\circ}$ C (77  $\pm 2^{\circ}$ F) and allow the water to stabilize.
- 13A. Zero or tare the balance with the immersion apparatus attached, ensuring that the device is not touching the sides or the bottom of the water bath.
- 14A. Suspend and immerse the bowl and sample in water at  $25 \pm 1^{\circ}$ C (77  $\pm 2^{\circ}$ F) for  $10 \pm 1$  minute. The holder shall be immersed sufficiently to cover both it and the bowl.
- 15A. Determine and record the submerged weight of the bowl and sample to the nearest 0.1 g. Designate as 'C.'

## Procedure – Pycnometer or Volumetric Flask

- 12B. Immediately fill the pycnometer / volumetric flask with water without reintroducing air.
- 13B. Stabilize the temperature of the pycnometer / volumetric flask and sample so that the final temperature is within  $25 \pm 1^{\circ}C$  (77  $\pm 2^{\circ}F$ ).
- 14B. Finish filling the pycnometer / volumetric flask with water that is  $25 \pm 1^{\circ}$ C (77  $\pm 2^{\circ}$ F), place the cover or a glass plate on the pycnometer / volumetric flask, and eliminate all air.
- *Note 2:* When using a metal pycnometer and cover, place the cover on the pycnometer and push down slowly, forcing excess water out of the hole in the center of the cover. Use care when filling the pycnometer to avoid reintroducing air into the water.
- 15B. Towel dry the outside of the pycnometer / volumetric flask and cover.
- 16B. Determine and record the mass of the pycnometer / volumetric flask, cover, de-aired water, and sample to the nearest 0.1 g. within 10±1 minute of completion of Step 11. Designate this mass as "E."

49\_T209\_short\_20

#### WAQTC

## Procedure – Mixtures Containing Uncoated Porous Aggregate

If the pores of the aggregates are not thoroughly sealed by a bituminous film, they may become saturated with water during the vacuuming procedure, resulting in an error in maximum density. To determine if this has occurred, complete the general procedure and then:

- 1. Carefully drain water from sample through a towel held over the top of the container to prevent loss of material.
- 2. Spread sample in a flat shallow pan and place before an electric fan to remove surface moisture.
- 3. Determine the mass of the sample when the surface moisture appears to be gone.
- 4. Continue drying and determine the mass of the sample at 15-minute intervals until less than a 0.5 g loss is found between determinations.
- 5. Record the mass as the saturated surface dry mass to the nearest 0.1 g. Designate this mass as "Assp."
- 6. Calculate, as indicated below, G<sub>mm</sub> using "A" and "AssD," and compare the two values.

## Calculation

Calculate the G<sub>mm</sub> to three decimal places as follows:

### **Bowl Procedure**

$$G_{mm} = \frac{A}{A + B - C}$$
 or  $G_{mm} = \frac{A}{A_{SSD} + B - C}$   
(for mixes containing uncoated aggregate materials)

Where:

A = mass of dry sample in air, g

Asso = mass of saturated surface dry sample in air, g

B = standardized submerged weight of the bowl, g, (see Annex A)

C = submerged weight of sample and bowl, g

FOP AASHTO T 209 (20)

## Example:

$$G_{mm} = \frac{1432.7 \ g}{1432.7 \ g + 286.3 \ g - 1134.9 \ g} = 2.453 \quad or$$
$$G_{mm} = \frac{1432.7 \ g}{1434.2 \ g + 286.3 \ g - 1134.9 \ g} = 2.447$$

Given:

 $\begin{array}{ll} A & = 1432.7 \ g \\ A_{SSD} & = 1434.2 \ g \\ B & = 286.3 \ g \\ C & = 1134.9 \ g \end{array}$ 

## Pycnometer / Volumetric Flask Procedure

$$G_{mm} = \frac{A}{A + D - E}$$
 or  $G_{mm} = \frac{A}{A_{SSD} + D - E}$   
(for mixtures containing uncoated materials)

Where:

| А    | = | mass of dry sample in air, g                                                                          |
|------|---|-------------------------------------------------------------------------------------------------------|
| Assd | = | mass of saturated surface-dry sample in air, g                                                        |
| D    | = | standardized mass of pycnometer / volumetric flask filled with water at 25°C (77°F), g, (See Annex A) |

E = mass of pycnometer / volumetric flask filled with water and the test sample at test temperature, g

### WAQTC

### Example (two increments of a large sample):

$$G_{mm_1} = \frac{2200.3 \, g}{2200.3 \, g + 7502.5 \, g - 8812.0 \, g} = 2.470$$

$$G_{mm_2} = \frac{1960.2 \ g}{1960.2 \ g + 7525.5 \ g - 8690.8 \ g} = 2.466$$

Given:

| Increment 1              | Increment 2              |
|--------------------------|--------------------------|
| $A_1 = 2200.3 g$         | $A_2 = 1960.2 \text{ g}$ |
| $D_1 = 7502.5 \text{ g}$ | $D_2 = 7525.5 \text{ g}$ |
| $E_1 = 8812.0 g$         | $E_2 = 8690.8 g$         |

Variation = 2.470 - 2.466 = 0.004, which is < 0.014

Allowable variation is: 0.014. The values may be used.

### Weighted average

For large samples tested a portion at a time, calculate the  $G_{mm (avg)}$  by multiplying the dry mass of each increment by its  $G_{mm}$ , add the results together ( $\Sigma$ ) and divide by the sum ( $\Sigma$ ) of the dry masses.

$$G_{mm(avg)} = \frac{\sum (A_x \times G_{mm_x})}{\sum A_x}$$

or

$$G_{mm(avg)} = \frac{\left(A_1 \times G_{mm_1}\right) + \left(A_2 \times G_{mm_2}\right)}{A_1 + A_2} etc.$$

Where:

Ax = mass of dry sample increment in air, g
 G<sub>mmx</sub> = theoretical maximum specific gravity of the increment

49\_T209\_short\_20

Asphalt 17-6

WAQTC

FOP AASHTO T 209 (20)

Example:

$$G_{mm(avg)} = \frac{(2200.3 \ g \times 2.470) + (1960.2 \ g \times 2.466)}{2200.3 \ g + 1960.2 \ g} = \frac{10,268.6}{4160.5 \ g} = 2.468$$

## **Theoretical Maximum Density**

To calculate the theoretical maximum density at 25°C (77°F) use one of the following formulas. The density of water at 25°C (77°F) is 997.1 in Metric units or 62.245 in English units.

Theoretical maximum density  $kg/m^3 = G_{mm} \times 997.1 \text{ kg}/\text{ m}^3$ 

 $2.468 \times 997.1 \text{ kg/ } \text{m}^3 = 2461 \text{ kg/ } \text{m}^3$ 

or

Theoretical maximum density  $lb/ft^3 = G_{mm} \times 62.245 \ lb/ft^3$ 

 $2.468 \times 62.245 \ lb/ft^3 = 153.6 \ lb/ft^3$ 

## Report

- On forms approved by the agency
- Sample ID
- G<sub>mm</sub> to the nearest 0.001
- Theoretical maximum density to the nearest  $1 \text{ kg/m}^3 (0.1 \text{ lb/ft}^3)$

WAQTC

FOP AASHTO T 209 (20)

49\_T209\_short\_20

Asphalt 17-8

T 209

# ANNEX A – STANDARDIZATION OF BOWL AND PYCNOMETER OR VOLUMETRIC FLASK

(Mandatory Information)

### **Bowl – Standardization**

- 1. Fill the water bath to overflow level with  $25 \pm 1^{\circ}C (77 \pm 2^{\circ}F)$  water and allow the water to stabilize.
- 2. Zero or tare the balance with the immersion apparatus attached, ensuring that the device is not touching the sides or the bottom of the water bath.
- 3. Suspend and completely immerse the bowl for  $10 \pm 1$  minute.
- 4. Determine and record the submerged weight of the bowl to the nearest 0.1 g.
- 5. Refill the water bath to overflow level.
- 6. Repeat Steps 2 through 5 two more times for a total of three determinations.
- 7. If the three determinations are within 0.3 g., average the determinations. Designate as "B."
- 8. If the variation of the three determinations is greater than 0.3 g., take corrective action and perform the standardization procedure again.

### Bowl – Check

- 1. Fill the water bath to overflow level  $25 \pm 1^{\circ}C (77 \pm 2^{\circ}F)$  water and allow the water to stabilize.
- 2. Zero or tare the balance with the immersion apparatus attached, ensuring that the device is not touching the sides or the bottom of the water bath.
- 3. Suspend and completely immerse the bowl for  $10 \pm 1$  minute.
- 4. Determine and record the submerged weight of the bowl to the nearest 0.1 g.
- 5. If this determination is within 0.3 g of the standardized value, use the standardized value for "B."
- 6. If it is not within 0.3 g, take corrective action and perform the standardization procedure again.

## Pycnometer or Volumetric Flask – Standardization

- 1. Fill the pycnometer / volumetric flask with water at approximately 25°C (77°F).
- 2. Place the metal or plastic cover, or a glass plate on the pycnometer / volumetric flask and eliminate all air. (See Note 2.)
- 3. Stabilize the pycnometer / volumetric flask at  $25 \pm 1^{\circ}$ C ( $77 \pm 2^{\circ}$ F) for  $10 \pm 1$  min.
- 4. Towel dry the outside of the pycnometer / volumetric flask and cover.
- 5. Determine and record the mass of the pycnometer / volumetric flask, water, and lid to the nearest 0.1 g.

Asphalt 17-9

- 6. Repeat Steps 2 through 5 two more times for a total of three determinations.
- 7. If the three determinations are within 0.3 g, average the three determinations. Designate as "D."
- 8. If the variation of the determinations is greater than 0.3 g., take corrective action and perform the "Pycnometer or Volumetric Flask Standardization" again.

## Pycnometer or Volumetric Flask – Check

- 1. Fill the pycnometer / volumetric flask with water at approximately 25°C (77°F).
- 2. Place the metal or plastic cover or a glass plate on the pycnometer / volumetric flask and eliminate all air. (See Note 2.)
- 3. Stabilize the pycnometer / volumetric flask at  $25 \pm 1^{\circ}$ C ( $77 \pm 2^{\circ}$ F) for  $10 \pm 1$  min.
- 4. Towel dry the outside of the pycnometer / volumetric flask and cover.
- 5. Determine and record the mass of the pycnometer / volumetric flask, water, and lid.
- 6. If this determination is within 0.3 g of the standardized value, use the standardized value for "D."
- 7. If it is not within 0.3 g, perform the standardization procedure again.

49\_T209\_short\_20

Asphalt 17-10

### PERFORMANCE EXAM CHECKLIST

### THEORETICAL MAXIMUM SPECIFIC GRAVITY (Gmm) AND DENSITY OF ASPHALT MIXTURES FOP FOR AASHTO T 209

| Par | ticip  | bant Name Exam Date _                                                                                                         |         |         |
|-----|--------|-------------------------------------------------------------------------------------------------------------------------------|---------|---------|
| Rec | cord t | the symbols "P" for passing or "F" for failing on each step of the checklist                                                  |         |         |
| Pr  | oced   | ure Element                                                                                                                   | Trial 1 | Trial 2 |
| 1.  | Sam    | ple reduced to correct size?                                                                                                  |         |         |
| 2.  | Part   | icles carefully separated insuring that aggregate is not fractured?                                                           |         |         |
| 3.  | Afte   | er separation, fine aggregate particles not larger than 6.3 mm (1/4 in.)?                                                     |         |         |
| 4.  | Sam    | nple at room temperature?                                                                                                     |         |         |
| 5.  | Star   | ndardized container (bowl or pycnometer / volumetric flask)?                                                                  |         |         |
| 6.  | Mas    | ss of container determined to 0.1 g?                                                                                          |         |         |
| 7.  | Mas    | ss of sample and container determined to 0.1 g?                                                                               |         |         |
| 8.  | Mas    | ss of sample calculated and conforms to required size?                                                                        |         |         |
| 9.  | Wat    | er at approximately 25°C (77°F) added to cover sample?                                                                        |         |         |
| 10. | Enti   | rapped air removed using partial vacuum for $15 \pm 2 \text{ min}$ ?                                                          |         |         |
| 11. |        | tainer and sample agitated continuously by mechanical device<br>nanually by vigorous shaking at intervals of about 2 minutes? |         |         |
| 12. |        | uum released to atmospheric pressure in 10 to 15 seconds if not o controlled?                                                 |         |         |
| 13. | Vac    | uum pump turned off?                                                                                                          |         |         |
| 14. | Bov    | vl determination:                                                                                                             |         |         |
|     | a.     | Water bath filled to the overflow level?                                                                                      |         |         |
|     | b.     | Bowl and sample suspended in water at $25 \pm 1^{\circ}C (77 \pm 2^{\circ}F)$ for $10 \pm 1$ minute?                          |         |         |
|     | c.     | Submerged weight of bowl and sample determined to 0.1 g?                                                                      |         |         |

### **OVER**

| ASPHALT                | Γ                                              | WAQTC                                   | FOP AASHTO T 209 (20)    | )    |
|------------------------|------------------------------------------------|-----------------------------------------|--------------------------|------|
| Procedur               | •e Element                                     |                                         | Trial 1 Tri              | al 2 |
| 15. Pycnor             | meter / Volumetric Flas                        | k determination:                        |                          |      |
|                        | cnometer / volumetric f                        | lask filled with water with<br>ample?   | out                      |      |
| b. Co                  | ontents stabilized at 25 ±                     | ±1°C (77 ±2°F)                          |                          |      |
|                        | venometer / volumetric f<br>25 ±1°C (77 ±2°F)? | lask completely filled with             | water that               |      |
|                        |                                                | v / volumetric flask and cov            |                          |      |
| 16. G <sub>mm</sub> ca | alculated correctly and r                      | eported to 0.001?                       |                          |      |
| 17. Densit             | y calculated correctly ar                      | nd reported to $1 \text{ kg/m}^3 (0.1)$ | $lb/ft^3)?$              |      |
| Commer                 | nts: First attempt:                            | PassFail                                | Second attempt: PassFail |      |
|                        |                                                |                                         |                          |      |
|                        |                                                |                                         |                          |      |
|                        |                                                |                                         |                          |      |
|                        |                                                |                                         |                          |      |
|                        |                                                |                                         |                          |      |
|                        |                                                |                                         |                          |      |
| Examiner               | Signature                                      |                                         | WAQTC #:                 |      |

Asphalt 7-16

Pub. October 2021

T 209

## WSDOT Errata to FOP for AASHTO T 255

## Total Evaporable Moisture Content of Aggregate by Drying

WAQTC FOP for AASHTO T 255 has been adopted by WSDOT with the following changes:

### Sample Preparation

**TABLE 1 Sample Sizes for Moisture Content of Aggregate** – Shall conform to the following nominal maximum size definition and include the note below.

\*For Aggregate, the nominal maximum size sieve is the largest standard sieve opening listed in the applicable specification upon which more than 1-percent of the material by weight is permitted to be retained. For concrete aggregate, the nominal maximum size sieve is the smallest standard sieve opening through which the entire amount of aggregate is permitted to pass.

*Note:* For an aggregate specification having a generally unrestrictive gradation (i.e., wide range of permissible upper sizes), where the source consistently fully passes a screen substantially smaller than the maximum specified size, the nominal maximum size, for the purpose of defining sampling and test specimen size requirements may be adjusted to the screen, found by experience to retain no more than 5 percent of the materials.

## TOTAL EVAPORABLE MOISTURE CONTENT OF AGGREGATE BY DRYING FOP FOR AASHTO T 255

### Scope

This procedure covers the determination of moisture content of aggregate in accordance with AASHTO T 255-00. It may also be used for other construction materials.

### Overview

Moisture content is determined by comparing the wet mass of a sample and the mass of the sample after drying to constant mass. The term constant mass is used to define when a sample is dry.

*Constant mass* – the state at which a mass does not change more than a given percent, after additional drying for a defined time interval, at a required temperature.

### Apparatus

- Balance or scale: Capacity sufficient for the principal sample mass, accurate to 0.1 percent of sample mass or readable to 0.1 g, meeting the requirements of AASHTO M 231.
- Containers: clean, dry, and capable of being sealed
- Suitable drying containers
- Microwave safe container with ventilated lids
- Heat source, controlled
  - Forced draft oven (preferred)
  - Ventilated oven
  - Convection oven
- Heat source, uncontrolled
  - Infrared heater, hot plate, fry pan, or any other device/method allowed by the agency that will dry the sample without altering the material being dried
  - Microwave oven (900 watts minimum)
- Hot pads or gloves
- Utensils such as spoons

### **Sample Preparation**

In accordance with the FOP for AASHTO R 90 obtain a representative sample in its existing condition. The representative sample size is based on Table 1 or other information that may be specified by the agency.

Aggregate 11-1

### FOP AASHTO T 255 (21)

#### WAQTC

| TABLE 1 |
|---------|

| Sample Sizes for Moisture Content of Aggregate |        |                     |
|------------------------------------------------|--------|---------------------|
| Nominal Maximum<br>Size*                       |        | Sample Mass<br>(lb) |
| <u>mm (in.)</u>                                | 50.000 | (110)               |
| 150 (6)                                        | 50,000 | (110)               |
| 100 (4)                                        | 25,000 | (55)                |
| 90 (3 1/2)                                     | 16,000 | (35)                |
| 75 (3)                                         | 13,000 | (29)                |
| 63 (2 1/2)                                     | 10,000 | (22)                |
| 50 (2)                                         | 8000   | (18)                |
| 37.5 (1 1/2)                                   | 6000   | (13)                |
| 25.0 (1)                                       | 4000   | (9)                 |
| 19.0 (3/4)                                     | 3000   | (7)                 |
| 12.5 (1/2)                                     | 2000   | (4)                 |
| 9.5 (3/8)                                      | 1500   | (3.3)               |
| 4.75 (No. 4)                                   | 500    | (1.1)               |

\* One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

Immediately seal or cover samples to prevent any change in moisture content or follow the steps in "Procedure."

### Procedure

Determine all masses to the nearest 0.1 percent of the sample mass or to the nearest 0.1 g.

When determining the mass of hot samples or containers or both, place and tare a buffer between the sample container and the balance. This will eliminate damage to or interference with the operation of the balance or scale.

- 1. Determine and record the mass of the container (and lid for microwave drying).
- 2. Place the wet sample in the container.
  - a. For oven(s), hot plates, infrared heaters, etc.: Spread the sample in the container.
  - b. For microwave oven: Heap sample in the container; cover with ventilated lid.
- 3. Determine and record the total mass of the container and wet sample.
- 4. Determine and record the wet mass of the sample (M<sub>W</sub>) by subtracting the container mass determined in Step 1 from the mass of the container and sample determined in Step 3.

Aggregate 11-2

Pub. October 2021

AGGREGATE

- 5. Place the sample in one of the following drying apparatuses:
  - a. Controlled heat source (oven): at  $110 \pm 5^{\circ}$ C (230  $\pm 9^{\circ}$ F).
  - b. Uncontrolled heat source (Hot plate, infrared heater, or other heat sources as allowed by the agency): Stir frequently to avoid localized overheating.
- 6. Dry until sample appears moisture free.
- 7. Determine mass of sample and container.
- 8. Determine and record the mass of the sample by subtracting the container mass determined in Step 1 from the mass of the container and sample determined in Step 7.
- 9. Return sample and container to the heat source for additional drying.
  - a. Controlled (oven): 30 minutes
  - b. Uncontrolled (Hot plate, infrared heater, or other heat sources as allowed by the agency): 10 minutes
  - c. Uncontrolled (Microwave oven): 2 minutes

**Caution:** Some minerals in the sample may cause the aggregate to overheat, altering the aggregate gradation.

- 10. Determine mass of sample and container.
- 11. Determine and record the mass of the sample by subtracting the container mass determined in Step 1 from the mass of the container and sample determined in Step 10.
- 12. Determine percent change by subtracting the new mass determination (M<sub>n</sub>) from the previous mass determination (M<sub>p</sub>) divide by the previous mass determination (M<sub>p</sub>) multiply by 100.
- 13. Continue drying, performing steps 9 through 12, until there is less than a 0.10 percent change after additional drying time.
- 14. Constant mass has been achieved; sample is defined as dry.
- 15. Allow the sample to cool. Determine and record the total mass of the container and dry sample.
- 16. Determine and record the dry mass of the sample (M<sub>D</sub>) by subtracting the mass of the container determined in Step 1 from the mass of the container and sample determined in Step 15.
- 17. Determine and record percent moisture (w) by subtracting the final dry mass determination (M<sub>D</sub>) from the initial wet mass determination (M<sub>W</sub>) divide by the final dry mass determination (M<sub>D</sub>) multiply by 100.

```
AGGREGATE
```

WAQTC

TABLE 2Methods of Drying

| Heat Source                                                                  | Specific Instructions                     | Drying intervals to<br>achieve constant<br>mass (minutes) |
|------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------|
| Controlled:                                                                  |                                           |                                                           |
| Forced Draft Oven (preferred),                                               | 110 ±5°C (230 ±9°F)                       | 30                                                        |
| Ventilated Oven, or Convection Oven                                          |                                           |                                                           |
| Uncontrolled:                                                                |                                           |                                                           |
| Hot plate, Infrared heater, or any other device/method allowed by the agency | Stir frequently                           | 10                                                        |
| Microwave                                                                    | Heap sample and cover with ventilated lid | 2                                                         |

## Calculation

### **Constant Mass:**

Calculate constant mass using the following formula:

% Change = 
$$rac{M_p - M_n}{M_p} imes 100$$

where:

M<sub>p</sub> = previous mass measurement

 $M_n = new$  mass measurement

### **Example:**

| Mass of container:                             |                       | 1232.1 g   |
|------------------------------------------------|-----------------------|------------|
| Mass of container after first drying c         | ycle:                 | 2637.2 g   |
| Mass, M <sub>p</sub> , of possibly dry sample: | 2637.2 g - 1232.1 g = | = 1405.1 g |
| Mass of container and sample after s           | econd drying cycle:   | 2634.1 g   |
| Mass, M <sub>n</sub> , of sample:              | 2634.1 g - 1232.1 g = | = 1402.0 g |

% Change = 
$$\frac{1405.1 \text{ g} - 1402.0 \text{ g}}{1405.1 \text{ g}} \times 100 = 0.22\%$$

0.22 percent is not less than 0.10 percent, so continue drying

39\_T255\_short\_21\_errata

Aggregate 11-4

#### AGGREGATE

#### WAQTC

FOP AASHTO T 255 (21)

 $\begin{array}{ll} \mbox{Mass of container and sample after third drying cycle:} & 2633.0 \ g \\ \mbox{Mass, } M_n, \mbox{ of sample:} & 2633.0 \ g - 1232.1 \ g = 1400.9 \ g \\ \end{array}$ 

% Change = 
$$\frac{1402.0 \text{ g} - 1400.9 \text{ g}}{1402.0 \text{ g}} \times 100 = 0.08\%$$

0.08 percent is less than 0.10 percent, so constant mass has been reached

### **Moisture Content:**

Calculate the moisture content, w, as a percent, using the following formula:

$$w = \frac{M_W - M_D}{M_D} \times 100$$

where:

w = moisture content, percent
 M<sub>W</sub> = wet mass
 M<sub>D</sub> = dry mass

**Example:** 

| Mass of container:                    |                       | 1232.1 g   |
|---------------------------------------|-----------------------|------------|
| Mass of container and wet same        | ple:                  | 2764.7 g   |
| Mass, Mw, of wet sample:              | 2764.7 g - 1232.1 g = | = 1532.6 g |
| Mass of container and dry sam         | ple (COOLED):         | 2633.5 g   |
| Mass, M <sub>D</sub> , of dry sample: | 2633.5 g - 1232.1 g = | = 1401.4 g |

$$w = \frac{1532.6 \text{ g} - 1401.4 \text{ g}}{1401.4 \text{ g}} \times 100 = \frac{131.7 \text{ g}}{1401.4 \text{ g}} = 9.40\% \text{ report } 9.4\%$$

### Report

- On forms approved by the agency
- Sample ID
- Mw, wet mass
- M<sub>D</sub>, dry mass
- Moisture content to the nearest 0.1 percent

Aggregate 11-5

AGGREGATE

WAQTC

39\_T255\_short\_21\_errata

Aggregate 11-6

Pub. October 2021

Page 8 of 10

WSDOT Materials Manual M 46-01.40 January 2022

## PERFORMANCE EXAM CHECKLIST

## TOTAL MOISTURE CONTENT OF AGGREGATE BY DRYING FOP FOR AASHTO T 255

| Pa  | rticipant Name                                                                                        | Exam Date                   |          |         |
|-----|-------------------------------------------------------------------------------------------------------|-----------------------------|----------|---------|
| Re  | cord the symbols "P" for passing or "F" for failin                                                    | g on each step of the checl | klist.   |         |
| Pr  | ocedure Element                                                                                       | Т                           | rial 1   | Trial 2 |
| 1.  | Representative sample of appropriate mass obtained                                                    | d?                          |          |         |
| 2.  | Mass of container determined to 0.1 percent or 0.1                                                    | g?                          |          |         |
| 3.  | Sample placed in container and wet mass determine<br>or 0.1 g?                                        | ed to 0.1 percent           |          |         |
| 4.  | Test sample mass conforms to the required mass?                                                       | _                           |          |         |
| 5.  | Loss of moisture avoided prior to mass determination                                                  | on?                         |          |         |
| 6.  | Sample dried by a suitable heat source?                                                               | _                           |          |         |
| 7.  | If aggregate heated by means other than a controlle<br>sample stirred to avoid localized overheating? | d oven, is                  |          |         |
| 8.  | If heated in a microwave, heaped and covered with                                                     | a ventilated lid            |          |         |
| 9.  | Is aggregate heated for the additional, specified tim                                                 | e?                          |          |         |
|     | a. Forced draft, ventilated, convection ovens - 30                                                    | minutes                     |          |         |
|     | b. Microwave – 2 minutes                                                                              |                             |          |         |
|     | c. Other – 10 minutes                                                                                 |                             |          |         |
| 10. | Mass determined and compared to previous mass – showing less than 0.10 percent loss?                  | _                           |          |         |
| 11. | Sample cooled before dry mass determination to 0.                                                     | l percent or 0.1 g?         |          |         |
| 12. | Calculations performed properly, and results report nearest 0.1 percent?                              | ed to the                   |          |         |
| Co  | mments: First attempt: PassFail                                                                       | Second attempt: Pa          | .ss      | _Fail   |
|     |                                                                                                       |                             |          |         |
|     | Examiner Signature                                                                                    | WAQTC #:                    |          |         |
| 24_ | _T255_pr_18 Aggregate 5-1                                                                             | 1 Pub                       | . Octobe | er 2021 |

AGGREGATE

WAQTC

24\_T255\_pr\_18

Aggregate 5-12

Pub. October 2021

Page 10 of 10

WSDOT Materials Manual M 46-01.40 January 2022

# WSDOT Errata to FOP for AASHTO T 265

## Laboratory Determination of Moisture Content of Soils

WAQTC FOP for AASHTO T 265 has been adopted by WSDOT with the following changes:

## **Sample Preparation**

**TABLE 1 Sample Sizes for Moisture Content of Aggregate** – Shall conform to the following nominal maximum size definition and include the note below.

\*For Aggregate, the nominal maximum size sieve is the largest standard sieve opening listed in the applicable specification upon which more than 1-percent of the material by weight is permitted to be retained. For concrete aggregate, the nominal maximum size sieve is the smallest standard sieve opening through which the entire amount of aggregate is permitted to pass.

**Note:** For an aggregate specification having a generally unrestrictive gradation (i.e., wide range of permissible upper sizes), where the source consistently fully passes a screen substantially smaller than the maximum specified size, the nominal maximum size, for the purpose of defining sampling and test specimen size requirements may be adjusted to the screen, found by experience to retain no more than 5 percent of the materials.

### TOTAL EVAPORABLE MOISTURE CONTENT OF AGGREGATE BY DRYING FOP FOR AASHTO T 255 LABORATORY DETERMINATION OF MOISTURE CONTENT OF SOILS FOP FOR AASHTO T 265

### Scope

This procedure covers the determination of moisture content of aggregate and soil in accordance with AASHTO T 255-00 and AASHTO T 265-15. It may also be used for other construction materials.

### Overview

Moisture content is determined by comparing the wet mass of a sample and the mass of the sample after drying to constant mass. The term constant mass is used to define when a sample is dry.

*Constant mass* – the state at which a mass does not change more than a given percent, after additional drying for a defined time interval, at a required temperature.

### Apparatus

- Balance or scale: capacity sufficient for the principal sample mass, accurate to 0.1 percent of sample mass or readable to 0.1 g, and meeting the requirements of AASHTO M 231
- Containers, clean, dry, and capable of being sealed
- Suitable drying containers
- Microwave safe container with ventilated lid
- Heat source, controlled:
  - Forced draft oven (preferred)
  - Ventilated oven
  - Convection oven
- Heat source, uncontrolled:
  - Infrared heater/heat lamp, hot plate, fry pan, or any other device/method allowed by the agency that will dry the sample without altering the material being dried.
  - Microwave oven (900 watts minimum)
- Utensils such as spoons
- Hot pads or gloves

E&B/ID 12-1

EMBANKMENT AND BASE **IN-PLACE DENSITY** 

### **Sample Preparation**

In accordance with the FOP for AASHTO R 90 obtain a representative sample in its existing condition.

For aggregates the representative sample size is based on Table 1 or other information that may be specified by the agency.

| Sample Sizes for Moisture Content of Aggregate |                |  |
|------------------------------------------------|----------------|--|
| Nominal                                        | Minimum Sample |  |
| Maximum Size*                                  | Mass           |  |
| mm (in.)                                       | g (lb)         |  |
| 4.75 (No. 4)                                   | 500 (1.1)      |  |
| 9.5 (3/8)                                      | 1500 (3.3)     |  |
| 12.5 (1/2)                                     | 2000 (4)       |  |
| 19.0 (3/4)                                     | 3000 (7)       |  |
| 25.0 (1)                                       | 4000 (9)       |  |
| 37.5 (1 1/2)                                   | 6000 (13)      |  |
| 50 (2)                                         | 8000 (18)      |  |
| 63 (2 1/2)                                     | 10,000 (22)    |  |
| 75 (3)                                         | 13,000 (29)    |  |
| 90 (3 1/2)                                     | 16,000 (35)    |  |
| 100 (4)                                        | 25,000 (55)    |  |
| 150 (6)                                        | 50,000 (110)   |  |

| r                                              | TABLE 1 |  |
|------------------------------------------------|---------|--|
| Sample Sizes for Moisture Content of Aggregate |         |  |
|                                                |         |  |

\* One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum.

44\_T255\_T265\_short\_21\_errata

E&B/ID 12-2

For soils the representative sample size is based on Table 2 or other information that may be specified by the agency.

TARLE 2

| IADLE Z                              |                                           |  |  |  |
|--------------------------------------|-------------------------------------------|--|--|--|
| Sample Sizes for                     | Sample Sizes for Moisture Content of Soil |  |  |  |
| Maximum Particle Minimum Sample Mass |                                           |  |  |  |
| Size                                 | g                                         |  |  |  |
| mm (in.)                             |                                           |  |  |  |
| 0.425 (No. 40)                       | 10                                        |  |  |  |
| 4.75 (No. 4)                         | 100                                       |  |  |  |
| 12.5 (1/2)                           | 300                                       |  |  |  |
| 25.0 (1)                             | 500                                       |  |  |  |
| 50 (2)                               | 1000                                      |  |  |  |

Immediately seal or cover samples to prevent any change in moisture content or follow the steps in "Procedure."

#### Procedure

Determine and record the sample mass as follows:

- For aggregate, determine and record all masses to the nearest 0.1 percent of the sample mass or to the nearest 0.1 g.
- For soil, determine and record all masses to the nearest 0.1 g.

When determining the mass of hot samples or containers or both, place and tare a buffer between the sample container and the balance. This will eliminate damage to or interference with the operation of the balance or scale.

- 1. Determine and record the mass of the container (and lid for microwave drying).
- 2. Place the wet sample in the container.
  - a. For oven(s), hot plates, infrared heaters, etc.: Spread the sample in the container.
  - b. For microwave oven: Heap sample in the container; cover with ventilated lid.
- 3. Determine and record the total mass of the container and wet sample.
- 4. Determine and record the wet mass of the sample (M<sub>W</sub>) by subtracting the container mass determined in Step 1 from the mass of the container and sample determined in Step 3.
- 5. Place the sample in one of the following drying apparatus:
  - a. For aggregate
    - i. Controlled heat source (oven): at  $110 \pm 5^{\circ}C (230 \pm 9^{\circ}F)$ .
    - ii. Uncontrolled heat source (Hot plate, infrared heater, or other heat source as allowed by the agency): Stir frequently to avoid localized overheating.
  - b. For soil controlled heat source (oven): at  $110 \pm 5^{\circ}$ C (230  $\pm 9^{\circ}$ F).

E&B/ID 12-3

*Note 1:* Soils containing gypsum or significant amounts of organic material require special drying. For reliable moisture contents dry these soils at 60°C (140°F). For more information see AASHTO T 265, Note 2.

WAQTC

- 6. Dry until sample appears moisture free.
- 7. Determine mass of sample and container.
- 8. Determine and record the mass of the sample by subtracting the container mass determined in Step 1 from the mass of the container and sample determined in Step 7.
- 9. Return sample and container to the heat source for additional drying.
  - a. For aggregate
    - i. Controlled heat source (oven): 30 minutes
    - ii. Uncontrolled heat source (Hot plate, infrared heater, or other heat source as allowed by the agency): 10 minutes
    - iii. Uncontrolled heat source (Microwave oven): 2 minutes

**Caution:** Some minerals in the sample may cause the aggregate to overheat, altering the aggregate gradation.

- b. For soil controlled heat source (oven): 1 hour
- 10. Determine mass of sample and container.
- 11. Determine and record the mass of the sample by subtracting the container mass determined in Step 1 from the mass of the container and sample determined in Step 10.
- 12. Determine percent change by subtracting the new mass determination (M<sub>n</sub>) from the previous mass determination (M<sub>p</sub>) divide by the previous mass determination (M<sub>p</sub>) multiply by 100.
- 13. Continue drying, performing steps 9 through 12, until there is less than a 0.10 percent change after additional drying time.
- 14. Constant mass has been achieved; sample is defined as dry.
- 15. Allow the sample to cool. Immediately determine and record the total mass of the container and dry sample.
- 16. Determine and record the dry mass of the sample (M<sub>D</sub>) by subtracting the mass of the container determined in Step 1 from the mass of the container and sample determined in Step 15.
- 17. Determine and record percent moisture (w) by subtracting the final dry mass determination (M<sub>D</sub>) from the initial wet mass determination (M<sub>w</sub>) divide by the final dry mass determination (M<sub>D</sub>) multiply by 100.

E&B/ID 12-4

| M                                                                            | ethods of Drying                             |                                                           |  |  |
|------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------|--|--|
|                                                                              | Aggregate                                    |                                                           |  |  |
| Heat Source                                                                  | Specific Instructions                        | Drying intervals to<br>achieve constant<br>mass (minutes) |  |  |
| Controlled:                                                                  |                                              |                                                           |  |  |
| Forced draft (preferred), ventilated, or convection oven                     | $110 \pm 5^{\circ}C (230 \pm 9^{\circ}F)$    | 30                                                        |  |  |
| Uncontrolled:                                                                |                                              | I                                                         |  |  |
| Hot plate, infrared heater, or any other device/method allowed by the agency | Stir frequently                              | 10                                                        |  |  |
| Microwave                                                                    | Heap sample and cover<br>with ventilated lid | 2                                                         |  |  |
|                                                                              | Soil                                         | l                                                         |  |  |
| Heat SourceSpecific InstructionsDrying increments<br>(minutes)               |                                              |                                                           |  |  |
| Controlled:                                                                  |                                              |                                                           |  |  |
| Forced draft (preferred), ventilated, or convection oven                     | 110 ±5°C (230 ±9°F)                          | 1 hour                                                    |  |  |

Table 3 Methods of Drving

44\_T255\_T265\_short\_21\_errata

E&B/ID 12-5

#### Calculation

#### **Constant Mass**

Calculate constant mass using the following formula:

% Change = 
$$\frac{M_p - M_n}{M_p} \times 100$$

Where:

 $M_p$  = previous mass measurement  $M_n$  = new mass measurement

### **Example:**

| Mass of container:                             |                       | 1232.1 g   |
|------------------------------------------------|-----------------------|------------|
| Mass of container and sample after first       | drying cycle:         | 2637.2 g   |
| Mass, M <sub>p</sub> , of possibly dry sample: | 2637.2 g - 1232.1 g = | = 1405.1 g |
| Mass of container and sample after second      | nd drying cycle:      | 2634.1 g   |
| Mass, M <sub>n</sub> , of sample:              | 2634.1 g - 1232.1 g = | = 1402.0 g |

% Change = 
$$\frac{1405.1 \ g - 1402.0 \ g}{1405.1 \ g} \times 100 = 0.22\%$$

0.22 percent is not less than 0.10 percent, so continue drying.

Mass of container and sample after third drying cycle: 2633.0 gMass, M<sub>n</sub>, of sample: 2633.0 g - 1232.1 g = 1400.9 g

% Change = 
$$\frac{1402.0 \ g - 1400.9 \ g}{1402.0 \ g} \times 100 = 0.08\%$$

0.08 percent is less than 0.10 percent, so constant mass has been reached.

44\_T255\_T265\_short\_21\_errata

E&B/ID 12-6

Pub. October 2021

Page 8 of 12

## WAQTC

#### **Moisture Content:**

Calculate the moisture content, as a percent, using the following formula:

$$w = \frac{M_W - M_D}{M_D} \times 100$$

where:

w = moisture content, percent $M_W = wet mass$  $M_D = dry mass$ 

Example:

| Mass of container:                    |                       | 1232.1 g   |
|---------------------------------------|-----------------------|------------|
| Mass of container and wet sam         | ıple:                 | 2764.7 g   |
| Mass, Mw, of wet sample:              | 2764.7 g - 1232.1 g = | = 1532.6 g |
| Mass of container and dry sam         | ple (COOLED):         | 2633.5 g   |
| Mass, M <sub>D</sub> , of dry sample: | 2633.5 g - 1232.1 g = | = 1401.4 g |

$$w = \frac{1532.6 \ g - 1401.4 \ g}{1401.4 \ g} \times 100 = \frac{131.2 \ g}{1401.4 \ g} \times 100 = 9.36\% \ report \ 9.4\%$$

### Report

- On forms approved by the agency
- Sample ID
- Mw, wet mass
- M<sub>D</sub>, dry mass
- w, moisture content to the nearest 0.1 percent

E&B/ID 12-7

WAQTC

44\_T255\_T265\_short\_21\_errata

E&B/ID 12-8

Pub. October 2021

Page 10 of 12

WSDOT Materials Manual M 46-01.40 January 2022

#### PERFORMANCE EXAM CHECKLIST

### TOTAL EVAPORABLE MOISTURE CONTENT OF AGGREGATE BY DRYING FOP FOR AASHTO T 255 LABORATORY DETERMINATION OF MOISTURE CONTENT OF SOILS FOP FOR AASHTO T 265

Participant Name Exam Date \_\_\_\_\_ Record the symbols "P" for passing or "F" for failing on each step of the checklist. **Procedure Element** Trial 1 Trial 2 1. Representative sample of appropriate mass obtained? 2. Mass of container determined to 0.1 g? 3. Sample placed in container and mass determined to 0.1 g? 4. Test sample mass conforms to the required mass? 5. Wet sample mass determined to 0.1 g? 6. Loss of moisture avoided prior to mass determination? 7. Sample dried by a suitable heat source? a. Describe suitable heat sources for aggregate? b. Describe suitable heat sources for soils? 8. If aggregate heated by means other than a controlled oven, is sample stirred to avoid localized overheating? 9. For microwave, aggregate heaped and covered with a ventilated lid? 10. For aggregate, heated for the additional, specified time? a. Forced draft, ventilated, convection ovens - 30 minutes b. Microwave – 2 minutes c. Other -10 minutes 11. For soil: a. Heated for at least 1hour additional drying time using a controlled heat source? 12. Mass determined and compared to previous mass - showing less than 0.10 percent loss? 13. Sample cooled, dry mass determined and recorded to the nearest 0.1 percent? 14. Moisture content calculated correctly and recorded to the nearest 0.1 percent?

#### OVER

| EMBANKMENT AND BASE<br>IN-PLACE DENSITY |                | WAQTC    | FOP AASHTO T 255/T 265 (18) | ГО Т 255/Т 265 (18) |  |
|-----------------------------------------|----------------|----------|-----------------------------|---------------------|--|
| Comments:                               | First attempt: | PassFail | Second attempt: PassFail    |                     |  |

\_\_\_\_\_

Examiner Signature \_\_\_\_\_\_\_WAQTC #:\_\_\_\_\_\_

17\_T255\_T265\_pr\_18

E&B/ID 3-12

Pub. October 2021

T 265

## ONE-POINT METHOD FOR DETERMINING MAXIMUM DRY DENSITY AND OPTIMUM MOISTURE FOP FOR AASHTO T 272

#### Scope

This procedure provides for a rapid determination of the maximum dry density and optimum moisture content of a soil sample, using a one-point determination in accordance with AASHTO T 272-18. This procedure is related to the FOPs for AASHTO T 99/T 180 and R 75.

One-point determinations are made by compacting the soil in a mold of a given size with a specified rammer dropped from a specified height and then compared to an individual moisture/density curve (FOP for AASHTO T 99 or T 180) or a family of curves (FOP for AASHTO R 75). Four alternate methods – A, B, C, and D – are used and correspond to the methods described in the FOP for AASHTO T 99/T 180. The method used in AASHTO T 272 must match the method used for the reference curve or to establish the family of curves. For example, when moisture-density relationships as determined by T 99 - Method C are used to form the family of curves or an individual moisture density curve, then T 99 - Method C must be used to for the one-point determination.

#### **Apparatus**

See the FOP for AASHTO T 99/T 180.

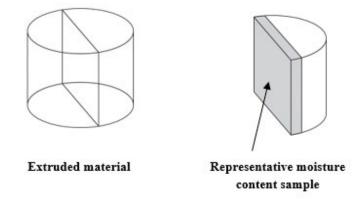
#### Sample

Sample size determined according to the FOP for AASHTO T 310. In cases where the existing individual curve or family cannot be used a completely new curve will need to be developed and the sample size will be determined by the FOP for AASHTO T 99/T 180.

- 1. If the sample is damp, dry it until it becomes friable under a trowel. Drying may be in air or by use of a drying apparatus maintained at a temperature not exceeding 60°C (140°F).
- 2. Thoroughly break up aggregations in a manner that avoids reducing the natural size of individual particles.
- 3. Pass the material through the appropriate sieve.

#### Procedure

Use the method matching the individual curve or Family of Curves. Refer to Table 1 of the FOP for AASHTO T 99 / T 180 for corresponding mold size, number of layers, number of blows, sieve size, and rammer specification for the various test methods.


- 1. Determine the mass of the clean, dry mold. Include the base plate but exclude the extension collar. Record the mass to the nearest 1 g (0.005 lb).
- 2. Thoroughly mix the sample with sufficient water to adjust moisture content to 80 to 100 percent of the anticipated optimum moisture.

E&B/ID 15-1

3. Form a specimen by compacting the prepared soil in the mold (with collar attached) in approximately equal layers. For each layer:

WAOTC

- a. Spread the loose material uniformly in the mold.
- *Note 1:* It is recommended to cover the remaining material with a non-absorbent sheet or damp cloth to minimize loss of moisture.
  - b. Lightly tamp the loose material with the manual rammer or other similar device, this establishes a firm surface.
  - c. Compact each layer with uniformly distributed blows from the rammer.
  - d. Trim down material that has not been compacted and remains adjacent to the walls of the mold and extends above the compacted surface.
- 4. Remove the extension collar. Avoid shearing off the sample below the top of the mold. The material compacted in the mold should not be over 6 mm (1/4 in.) above the top of the mold once the collar has been removed.
- 5. Trim the compacted soil even with the top of the mold with the beveled side of the straightedge.
- 6. Clean soil from exterior of the mold and base plate.
- 7. Determine the mass of the mold and wet soil to the nearest 1 g (0.005 lb) or better.
- 8. Determine the wet mass of the sample by subtracting the mass in Step 1 from the mass in Step 7.
- 9. Calculate the wet density as indicated below under "Calculations."
- 10. Extrude the material from the mold. For soils and soil-aggregate mixtures, slice vertically through the center and remove one of the cut faces for a representative moisture content sample from one of the cut faces. For granular materials, a vertical face will not exist. Take a representative sample ensuring that all layers are represented. This sample must meet the sample size requirements of the test method used to determine moisture content.



11. Determine the moisture content of the sample in accordance with the FOP for AASHTO T 255 / T 265.

47\_T272\_short\_21\_errata

E&B/ID 15-2

FOP AASHTO T 272 (21)

#### Calculations

1. Calculate the wet density, in  $kg/m^3$  (lb/ft<sup>3</sup>), by dividing the wet mass by the measured volume of the mold (T 19).

Example – Methods A or C mold:

Wet mass = 2.0055 kg (4.42 lb)

Measured volume of the mold =  $0.0009469 \text{ m}^3 (0.03344 \text{ ft}^3)$ 

Wet Density =  $\frac{2.0055 \ kg}{0.0009469 \ m^3} = 2118 \ kg/m^3$ Wet Density =  $\frac{4.42 \ lb}{0.03344 \ ft^3} = 132.2 \ lb/ft^3$ 

2. Calculate the dry density as follows.

$$\rho_d = \left(\frac{\rho_w}{w+100}\right) \times 100 \quad or \quad \rho_d = \frac{\rho_w}{\left(\frac{w}{100}\right) + 1}$$

Where:

 $\rho_d = Dry \text{ density, } kg/m^3 (lb/ft^3)$   $\rho_w = Wet \text{ density, } kg/m^3 (lb/ft^3)$ 

w = Moisture content, as a percentage

Example:

$$\rho_{\rm w} = 2118 \text{ kg/m}^3 (132.2 \text{ lb/ft}^3)$$
  
w = 13.5%

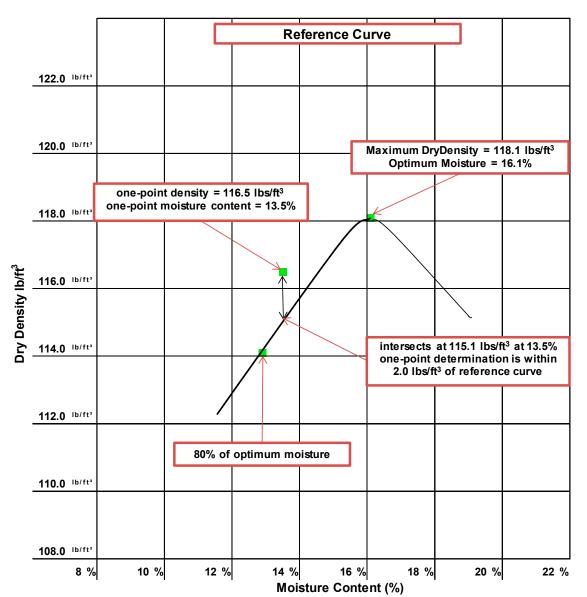
$$\rho_d = \left(\frac{2118 \, kg/m^3}{13.5 + 100}\right) \times 100 = 1866 \ kg/m^3 \ \rho_d = \left(\frac{132.2 \, lb/ft^3}{13.5 + 100}\right) \times 100 = 116.5 \, lb/ft^3$$

or

$$\rho_d = \left(\frac{2118 \, kg/m^3}{\frac{13.5}{100} + 1}\right) = 1866 \, kg/m^3 \, \rho_d = \left(\frac{132.2 \, lb/ft^3}{\frac{13.5}{100} + 1}\right) = 116.5 \, lb/ft^3$$

47\_T272\_short\_21\_errata

E&B/ID 15-3


EMBANKMENT AND BASE IN-PLACE DENSITY

# Maximum Dry Density and Optimum Moisture Content Determination Using an Individual Moisture / Density Curve

- 1. The moisture content must be within 80 to 100 percent of optimum moisture of the reference curve. Compact another specimen, using the same material, at an adjusted moisture content if the one-point does not fall in the 80 to 100 percent of optimum moisture range.
- 2. Plot the one-point, dry density on the vertical axis and moisture content on the horizontal axis, on the reference curve graph.
- 3. If the one-point falls on the reference curve or within  $\pm 2.0 \text{ lbs/ft}^3$ , use the maximum dry density and optimum moisture content determined by the curve.
- 4. Use the FOP for AASHTO T 99/T 180 Annex A to determine corrected maximum dry density and optimum moisture content if oversize particles have been removed.
- 5. Perform a full moisture-density relationship if the one-point does not fall on or within  $\pm 2.0 \text{ lbs/ft}^3$  of the reference curve at 80 to 100 percent optimum moisture.

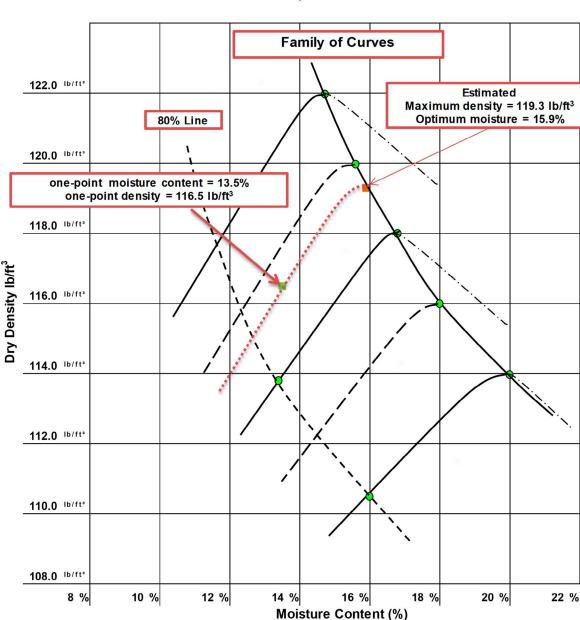
47 T272 short 21 errata

E&B/ID 15-4



Example

The results of a one-point determination were  $116.5 \text{ lb/ft}^3$  at 13.5 percent moisture. The point was plotted on the reference curve graph. The one-point determination is within 2.0 lb/ft<sup>3</sup> of the point on the curve that corresponds with the moisture content.


E&B/ID 15-5

# Maximum Dry Density and Optimum Moisture Content Determination Using a Family of Curves

- 1. Plot the one-point, dry density on the vertical axis and moisture content on the horizontal axis, on the reference family of curves graph.
- 2. If the moisture-density one-point falls on one of the curves in the family of curves, use the maximum dry density and optimum moisture content defined by that curve.
- 3. If the moisture-density one-point falls within the family of curves but not on an existing curve, draw a new curve through the plotted single point, parallel and in character with the nearest existing curve in the family of curves. Use the maximum dry density and optimum moisture content as defined by the new curve.
  - a. The one-point must fall either between or on the highest or lowest curves in the family. If it does not, then a full curve must be developed.
  - b. If the one-point plotted within or on the family of curves does not fall in the 80 to 100 percent of optimum moisture content, compact another specimen, using the same material, at an adjusted moisture content that will place the one point within this range.
- 4. Use the FOP for AASHTO T 99/T 180 Annex A to determine corrected maximum dry density and optimum moisture content if oversize particles have been removed.
- 5. If the new curve through a one-point is not well defined or is in any way questionable, perform a full moisture-density relationship to correctly define the new curve and verify the applicability of the family of curves.
  - *Note 2:* New curves drawn through plotted single point determinations shall not become a permanent part of the family of curves until verified by a full moisture-density procedure following the FOP for AASHTO T 99/T 180.

47\_T272\_short\_21\_errata

E&B/ID 15-6



Example

The results of a one-point determination were  $116.5 \text{ lb/ft}^3$  at 13.5 percent moisture. The point was plotted on the reference curve graph. The point was plotted on the appropriate family between two previously developed curves near and intermediate curve.

The "dotted" curve through the moisture-density one-point was sketched between the existing curves. A maximum dry density of 119.3 lb/ft<sup>3</sup> and a corresponding optimum moisture content of 15.9 percent were estimated.

47\_T272\_short\_21\_errata

E&B/ID 15-7

#### T 272

# EMBANKMENT AND BASE IN-PLACE DENSITY

## Report

- On forms approved by the agency
- Sample ID
- Maximum dry density to the nearest  $1 \text{ kg/m}^3 (0.1 \text{ lb/ft}^3)$

WAQTC

- Corrected maximum dry density (if applicable)
- Optimum moisture content to the nearest 0.1 percent
- Corrected optimum moisture content (if applicable)
- Reference curve or Family of Curves used

47\_T272\_short\_21\_errata

E&B/ID 15-8

## PERFORMANCE EXAM CHECKLIST

## ONE-POINT METHOD FOP FOR AASHTO T 272 (T 99)

| Participant Name |                                                                                                                                         | Exam Date            |         |         |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|---------|
| Rec              | cord the symbols "P" for passing or "F" for failing on each st                                                                          | ep of the checklist. |         |         |
| Pro              | ocedure Element                                                                                                                         |                      | Trial 1 | Trial 2 |
| 1.               | One-point determination of dry density and corresponding moisture content made in accordance with the FOP for AA                        |                      |         |         |
|                  | a. Correct size (4.75 mm / No. 4 or 19.0 mm / 3/4 in.) ma                                                                               | aterial used?        |         |         |
| 2.               | If necessary, sample dried until friable in air or drying app<br>not exceeding 60°C (140°F)?                                            | aratus,              |         |         |
| 3.               | Sample broken up and an adequate amount sieved over the sieve (4.75 mm / No. 4 or 19.0 mm / 3/4 in.) to determine particle) percentage? |                      |         |         |
| 4.               | Sample passing the sieve has appropriate mass?                                                                                          |                      |         |         |
| 5.               | Moisture content adjusted if needed?                                                                                                    |                      |         |         |
| 6.               | Determine mass of clean, dry mold without collar to neare                                                                               | st 1 g (0.005 lb.)?  |         |         |
| 7.               | Mold placed on rigid and stable foundation?                                                                                             |                      |         |         |
| 8.               | Layer of soil (approximately one third compacted depth) p<br>with collar attached, loose material lightly tamped?                       | laced in mold        |         |         |
| 9.               | Soil compacted with appropriate number of blows (25 or 5                                                                                | 56)?                 |         |         |
| 10.              | Material adhering to the inside of the mold trimmed?                                                                                    |                      |         |         |
| 11.              | Layer of soil (approximately two thirds compacted depth) with collar attached, loose material lightly tamped?                           | placed in mold       |         |         |
| 12.              | Soil compacted with appropriate number of blows (25 or 5                                                                                | 56)?                 |         |         |
| 13.              | Material adhering to the inside of the mold trimmed?                                                                                    |                      |         |         |
| 14.              | Mold filled with soil such that compacted soil will be above loose material lightly tamped?                                             | <i>i</i> e the mold, |         |         |
| 15.              | Soil compacted with appropriate number of blows (25 or 5                                                                                | 56)?                 |         |         |
| 16.              | Collar removed without shearing off sample?                                                                                             |                      |         |         |
| 17.              | Approximately 6 mm $(1/4 \text{ in.})$ of compacted material above top of the mold (without the collar)?                                | <i>i</i> e the       |         |         |
| 18.              | Soil trimmed to top of mold with the beveled side of the st                                                                             | raightedge?          |         |         |
| 19.              | Remove soil from exterior surface of mold and base plate?                                                                               | )                    |         |         |
| 20.              | Mass of mold and contents determined to appropriate prec                                                                                | ision?               |         |         |
|                  | OVED                                                                                                                                    |                      |         |         |

#### OVER

28\_T272\_pr\_99\_18

E&B/ID 6-13

#### T 272

#### EMBANKMENT AND BASE IN-PLACE DENSITY

| Procedure Element                                                                                                                                           | Trial 1 | Trial 2 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|
| 21. Wet density calculated from the wet mass?                                                                                                               |         |         |
| 22. Soil removed from mold using a sample extruder if needed?                                                                                               |         |         |
| 23. Soil sliced vertically through center (non-granular material)?                                                                                          |         |         |
| 24. Moisture sample removed ensuring all layers are represented?                                                                                            |         |         |
| 25. Moist mass determined immediately to 0.1 g?                                                                                                             |         |         |
| 26. Moisture sample mass of correct size?                                                                                                                   |         |         |
| 27. Sample dried and water content determined according to the FOP for T 255/T 265?                                                                         |         |         |
| 28. One-point plotted on family of curves supplied?                                                                                                         |         |         |
| a. One-point falls within 80 to 100 percent of optimum moisture content in order to be valid?                                                               |         |         |
| b. If one-point does not fall within 80 to 100 percent of optimum moisture content, another one-point determination with an adjusted water content is made? |         |         |
| c. Maximum dry density and corresponding optimum moisture content correctly estimated?                                                                      |         |         |
| 29. One-point plotted on a single reference curve?                                                                                                          |         |         |
| a. Does one-point plot within 2 $lb/ft^3$ in order to be valid?                                                                                             |         |         |
| b. Does one-point fall within 80 to 100 percent of optimum moisture content in order to be valid?                                                           |         |         |
| c. Maximum dry density and corresponding optimum moisture content determined from single reference curve?                                                   |         |         |
| Comments: First attempt: PassFail Second attempt:                                                                                                           | PassI   | Fail    |
|                                                                                                                                                             |         |         |

WAQTC

28 T272 nr 99 18

E&B/ID 6-14

## PERFORMANCE EXAM CHECKLIST

## ONE-POINT METHOD FOP FOR AASHTO T 272 (T 180)

| Par | ticipant Name Exam Da                                                                                                                                            | te      |         |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|
| Rec | cord the symbols "P" for passing or "F" for failing on each step of the checl                                                                                    | klist.  |         |
| Pro | ocedure Element                                                                                                                                                  | Trial 1 | Trial 2 |
| 1.  | One-point determination of dry density and corresponding<br>moisture content made in accordance with the FOP for AASHTO T 180                                    | )?      |         |
|     | a. Correct size (4.75 mm / No. 4 or 19.0 mm / 3/4 in.) material used?                                                                                            |         |         |
| 2.  | If necessary, sample dried until friable in air or drying apparatus, not exceeding 60°C (140°F)?                                                                 |         |         |
| 3.  | Sample broken up and an adequate amount sieved over the appropriate sieve (4.75 mm / No. 4 or 19.0 mm / 3/4 in.) to determine oversize (coaparticle) percentage? | rse     |         |
| 4.  | Sample passing the sieve has appropriate mass?                                                                                                                   |         |         |
| 5.  | Moisture content adjusted if needed?                                                                                                                             |         |         |
| 6.  | Determine mass of clean, dry mold without collar to nearest 1 g (0.005                                                                                           | lb.)?   |         |
| 7.  | Mold placed on rigid and stable foundation?                                                                                                                      |         |         |
| 8.  | Layer of soil (approximately one fifth compacted depth) placed in mold with collar attached, loose material lightly tamped?                                      | l       |         |
| 9.  | Soil compacted with appropriate number of blows (25 or 56)?                                                                                                      |         |         |
| 10. | Material adhering to the inside of the mold trimmed?                                                                                                             |         |         |
| 11. | Layer of soil (approximately two fifths compacted depth) placed in mol<br>with collar attached, loose material lightly tamped?                                   | d       |         |
| 12. | Soil compacted with appropriate number of blows (25 or 56)?                                                                                                      |         |         |
| 13. | Material adhering to the inside of the mold trimmed?                                                                                                             |         |         |
| 14. | Layer of soil (approximately three fifths compacted depth) placed in mo<br>with collar attached, loose material lightly tamped?                                  | old     |         |
| 15. | Soil compacted with appropriate number of blows (25 or 56)?                                                                                                      |         |         |
| 16. | Material adhering to the inside of the mold trimmed?                                                                                                             |         |         |
| 17. | Layer of soil (approximately four fifths compacted depth) placed in mo<br>with collar attached, loose material lightly tamped?                                   | ld      |         |
| 18. | Soil compacted with appropriate number of blows (25 or 56)?                                                                                                      |         |         |
| 19. | Material adhering to the inside of the mold trimmed?                                                                                                             |         |         |

#### OVER

29 T272 pr 180 18

E&B/ID 6-15

T 272

## FOP AASHTO T 272 (18)

| Pr  | oce  | lure Element                                                                                                                                             | Trial 1      | Trial 2 |
|-----|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|
| 20. |      | ld filled with soil such that compacted soil will be above the mold, se material lightly tamped?                                                         |              |         |
| 21. | Soi  | l compacted with appropriate number of blows (25 or 56)?                                                                                                 |              |         |
| 22. | Co   | lar removed without shearing off sample?                                                                                                                 |              |         |
| 23. | -    | proximately 6 mm (1/4 in.) of compacted material above the of the mold (without the collar)?                                                             |              |         |
| 24. | Soi  | l trimmed to top of mold with the beveled side of the straightedge?                                                                                      |              |         |
| 25. | Re   | nove soil from exterior surface of mold and base plate?                                                                                                  |              |         |
| 26. | Ma   | ss of mold and contents determined to appropriate precision?                                                                                             |              |         |
| 27. | We   | t density calculated from the wet mass?                                                                                                                  |              |         |
| 28. | Soi  | l removed from mold using a sample extruder if needed?                                                                                                   |              |         |
| 29. | Soi  | l sliced vertically through center (non-granular material)?                                                                                              |              |         |
| 30. | Мс   | isture sample removed ensuring all layers are represented?                                                                                               |              |         |
| 31. | Мс   | ist mass determined immediately to 0.1 g?                                                                                                                |              |         |
| 32. | Мс   | isture sample mass of correct size?                                                                                                                      |              |         |
| 33. |      | nple dried and water content determined according to the FOP for 55/T 265?                                                                               |              |         |
| 34. | On   | e-point plotted on family of curves supplied?                                                                                                            |              |         |
|     | a.   | One-point falls within 80 to 100 percent of optimum moisture content in order to be valid?                                                               |              |         |
|     | b.   | If one-point does not fall within 80 to 100 percent of optimum moisture content, another one-point determination with an adjusted water content is made? |              |         |
|     | c.   | Maximum dry density and corresponding optimum moisture content correctly estimated?                                                                      |              |         |
| 35. | On   | e-point plotted on a single reference curve?                                                                                                             |              |         |
|     | a.   | Does one-point plot within 2 lb/ft <sup>3</sup> in order to be valid?                                                                                    |              |         |
|     | b.   | Does one-point fall within 80 to 100 percent of optimum moisture content in order to be valid?                                                           |              |         |
|     | c.   | Maximum dry density and corresponding optimum moisture content determined from single reference curve?                                                   |              |         |
| Co  | mn   | nents: First attempt: PassFailSecond attempt:                                                                                                            |              |         |
| Exa | ami  | ner SignatureWAQTC #:                                                                                                                                    |              |         |
| 29_ | _T27 | 2_pr_180_18 E&B/ID 6-16 F                                                                                                                                | Pub. October | 2021    |

WAQTC

## WSDOT Errata to FOP for AASHTO T 304

## Uncompacted Void Content of Fine Aggregate

WAQTC FOP for AASHTO T 304 has been adopted by WSDOT with the following changes:

## Report

Replace first bullet with below:

• The Uncompacted Voids  $(U_m)$  in percent to the nearest 1 percent.

### WAQTC

# UNCOMPACTED VOID CONTENT OF FINE AGGREGATE FOP FOR AASHTO T 304

## Scope

This procedure covers the determination of the loose uncompacted void content of a sample of fine aggregate in accordance with AASHTO T 304-17. When measured on an aggregate of a known grading, void content indicates the aggregate's angularity, sphericity, and surface texture compared with other fine aggregates tested in the same grading. When void content is measured on an as-received fine aggregate grading, it can indicate the effect of the fine aggregate on the workability of a mixture in which it is used.

## Apparatus

- Cylindrical Measure approximately 100 mL right cylinder made of seamless smooth wall metal, inside diameter approximately 39 mm and inside height approximately 86 mm, with a metal bottom at least 6 mm thick, which is firmly sealed to the cylinder with means for aligning the axis of the cylinder with that of the funnel (see Figure 1).
- Funnel the lateral surface of the right frustum of a smooth metal cone at least 38 mm high sloped  $60 \pm 4$  degrees from the horizontal with an opening of  $12.7 \pm 0.6$  mm diameter with a volume of at least 200 mL or with a supplemental glass or metal container to provide the required volume (see Figure 2).
- Funnel Stand A three or four-legged support capable of holding the funnel firmly in position 115 ± 2 mm above the top of the cylinder with the axis of the funnel colinear (within a 4 degree angle and a displacement of 2 mm) with the axis of the cylindrical measure. A suitable arrangement is shown in Figure 2.
- Glass Plate minimum 4 mm thick, approximately 60 mm by 60 mm used to calibrate the cylindrical measure.
- Pan flat metal or plastic pan of sufficient size to contain the funnel stand and to prevent loss of material.
- Metal spatula with a straight edged blade approximately 100 mm long, and at least 20 mm wide with an end cut at a right angle to the edges.
- Scale or balance accurate and readable to  $\pm 0.1$  g within the range of use, capable of weighing the cylindrical measure and its contents.

FOP Library - 1

## WAQTC

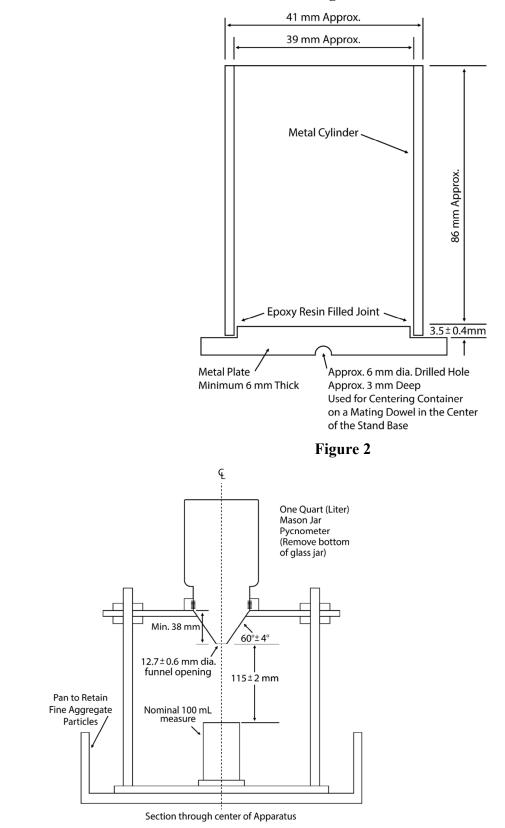



Figure 1

T304\_short\_21\_errata

FOP Library - 2

Pub. October 2021

Page 3 of 12

WAQTC

## **Preparation of Test Samples**

Obtain the standard graded sample from one of the following:

- 1. Use the sieve analysis samples from the FOP for AASHTO T 27/11.
- 2. Store the dry separate size fractions obtained from one (or more) sieve analysis in separate containers for each size.

OR:

- 1. Obtain sample according to the FOP for AASHTO R 90
- 2. Reduce according to the FOP for AASHTO R 76
- 3. Wash sample over a 150-μm (No. 100) or 75-μm (No. 200) sieve according to FOP for AASHTO T 27/11.
- 4. Dry to constant mass according to the FOP for AASHTO T 255.
- 5. Using sieves in Table 1, separate into individual size fractions according to FOP for AASHTO T 27/11
- 6. Weigh out and combine the following quantities of material identified in Table 1.

| Individual Size Fraction |                  |                |  |
|--------------------------|------------------|----------------|--|
| Passing                  | Retained On      | Mass<br>g      |  |
| No. 8 (2.36 mm)          | No. 16 (1.18 mm) | $44.0 \pm 0.2$ |  |
| No. 16 (1.18 mm)         | No. 30 (600 µm)  | $57.0 \pm 0.2$ |  |
| No. 30 (600 um)          | No. 50 (300 µm)  | $72.0\pm0.2$   |  |
| No. 50 (300 um)          | No. 100 (150 µm) | $17.0 \pm 0.2$ |  |
|                          | Total            | $190.0\pm0.2$  |  |

Table 1

#### WAQTC

T 304

### Specific Gravity of Fine Aggregate

The fine aggregate bulk specific gravity  $(G_{sb})$  is used to determine the uncompacted void content. Use the  $G_{sb}$  from the source if it is known. If it is unknown determine the  $G_{sb}$  on the minus No. 4 (4.75 mm) material according to AASHTO T 84.

If the  $G_{sb}$  of some size fractions differ by more than 0.05 from the  $G_{sb}$  typical of the complete sample, the  $G_{sb}$  of the fraction (or fractions) being tested must be determined.

*Note 1:* An indicator of differences in specific gravity of various particle sizes is a comparison of specific gravities run on the fine aggregate in different gradings. Specific gravity can be run on gradings with and without specific size fractions of interest. If specific gravity differences exceed 0.05, determine the specific gravity of the individual 2.36 mm (No. 8) to 150 um (No. 100) sizes for use either by direct measurement or by calculation using the specific gravity data on gradings with and without the size fraction of interest. A difference in specific gravity of 0.05 will change the calculated void content about 1 percent.

#### Procedure

- 1. Record the mass of the empty measure to the nearest 0.1 g.
- 2. Mix test sample with the spatula until it appears to be homogeneous.
- 3. Position the jar and funnel section in the stand and center the cylindrical measure as shown in Figure 2.
- 4. Using a finger, block the opening of the funnel, pour the test sample into the funnel.
- 5. Level the material in the funnel with the spatula.
- 6. Withdraw finger allowing the sample to freely flow into the cylindrical measure.
- 7. After the funnel empties, strike-off excess fine aggregate from the cylindrical measure with a rapid single pass of the spatula with the width of the blade vertical using the straight part of its edge in light contact with the top of the measure.

Until strike-off is complete, avoid vibration or disturbance which could cause compaction of the material in the measure.

- *Note 2:* After strike-off, the cylindrical measure may be tapped lightly to compact the sample to make it easier to transfer the container to scale or balance without spilling any of the sample.
- 8. Brush adhering grains from the outside of the container
- 9. Determine and record the mass of the cylindrical measure and contents to the nearest 0.1 g.
- 10. Recombine the sample from the pan and cylindrical measure
- 11. Stir until homogenous
- 12. Repeat Steps 3 through 9.
- 13. Determine net mass of aggregate in measure by subtracting mass of the measure from the mass of measure and fine aggregate.
- 14. Calculate the uncompacted void content  $(U_s)$  of each determination to the nearest 0.1 percent.
- 15. Average the results of the two determinations  $(U_m)$  to the nearest 0.1 percent.

T304\_short\_21\_errata

FOP Library - 4

WAQTC

### Calculations

Calculate the uncompacted voids for each determination:

$$U_s = \frac{V - \left(\frac{F}{G_{sb}}\right)}{V} \times 100$$

Where:

 $U_s$  = uncompacted voids in the material to the nearest 0.1 percent

V = volume of cylindrical measure, mL

F = net mass, g, of fine aggregate in measure

G<sub>sb</sub>= Bulk dry specific gravity of fine aggregate;

#### Calculate the average uncompacted voids for the two determinations:

$$U_m = \frac{U_1 + U_2}{2}$$

Where:

 $U_m$  = the average uncompacted void content to the nearest 0.1 percent

 $U_1$  = first determination

 $U_2$  = second determination

#### **Example:**

$$U_s = \frac{99.8 \ mL - \left(\frac{146.2 \ g}{2.636}\right)}{99.8 \ mL} \times 100 = 44.4\%$$

Where:

$$U_s$$
 = uncompacted voids in the material to the nearest 0.1 percent

$$V = 99.8 \text{ mL}$$

$$F = 146.2 g$$

$$G_{sb} = 2.636$$

T304 short 21 errata

## WAQTC

FOP AASHTO T 304 (19)

The average uncompacted voids for the two determinations:

$$U_m = \frac{48.7\% + 49.9\%}{2} = 49.3\%$$

Where:

 $U_m$  = the average uncompacted void content to the nearest 0.1 percent  $U_1$  = 48.7%  $U_2$  = 49.9%

## Report

- The Uncompacted Voids (U<sub>m</sub>) in percent to the nearest 0.1 percent.
- The specific gravity value used in the calculations.

T304\_short\_21\_errata

FOP Library - 6

## ANNEX — CALIBRATION OF CYLINDRICAL MEASURE

(Mandatory Information)

- 1. Apply a light coat of grease to the top edge of the dry, empty cylindrical measure.
- 2. Determine the mass of the measure, grease, and glass plate to the nearest 0.1 g.
- 3. Fill the measure with freshly boiled, deionized water at a temperature of 18 to 24°C (64.4 to 75.2°F).
- 4. Record the temperature of the water.
- 5. Place the glass plate on the measure, being sure that no air bubbles remain.
- 6. Dry the outer surfaces of the measure.
- 7. Determine the combined mass of measure, glass plate, grease, and water to the nearest 0.1 g.

## Calculations

Calculate the volume of the measure as follows:

$$V = 1000 \times \frac{M}{D}$$

Where:

V = volume of cylinder, to the nearest 0.1 mL

M = net mass of water, g

D = density of water kg/m<sup>3</sup> (see Table B1 in the FOP for AASHTO T 99/T 180 for density at the temperature used)

## Example

$$V = 1000 \times \frac{99.6}{997.99} = 99.8 \, mL$$

## Where:

V = volume of cylinder, to the nearest 0.1 mL M = 99.6 g D = 997.99 kg/m<sup>3</sup>, density of water at 21°C (69.8°F)

| Г304 | short | 21 | errata |
|------|-------|----|--------|
|      |       |    |        |

FOP Library - 7

FOP AASHTO T 304 (19)

 $T304\_short\_21\_errata$ 

FOP Library - 8

## Performance Exam Checklist UNCOMPACTED VOID CONTENT OF FINE AGGREGATE

## FOP FOR AASHTO T 304

Participant Name \_\_\_\_\_ Exam Date \_\_\_\_\_

Record the symbols "P" for passing or "F" for failing on each step of the checklist.

| Prep | aration of Test Samples                                                                                               | Trial 1 | Trial 2 |
|------|-----------------------------------------------------------------------------------------------------------------------|---------|---------|
| 1.   | Sample obtained per FOP for AASHTO R 90?                                                                              |         |         |
| 2.   | Sample reduced to testing size per FOP for AASHTO R 76?                                                               |         |         |
| 3.   | Sample washed over 150- $\mu$ m (No. 100) or 75- $\mu$ m (No. 200) sieve in accordance with FOP for AASHTO T 27_T 11? |         |         |
| 4.   | Sample dried to constant mass?                                                                                        |         |         |
| 5.   | Separated into individual size fractions?                                                                             |         |         |
| 6.   | Material weighed out and combined per Table 1?                                                                        |         |         |
| 7.   | Fine aggregate bulk specific gravity (Gsb) determined according to procedure?                                         |         |         |
| Proc | edure Element                                                                                                         | Trial 1 | Trial 2 |
| 8.   | Cylindrical measure calibrated according to Annex?                                                                    |         |         |
| 9.   | Mass of empty measure recorded to nearest 0.1 g?                                                                      |         |         |
| 10.  | Test sample mixed until it appears homogeneous?                                                                       |         |         |
| 11.  | Cylindrical measure centered on stand per Figure 2?                                                                   |         |         |
| 12.  | Finger used to block funnel opening?                                                                                  |         |         |
| 13.  | Test sample poured in funnel and leveled with spatula?                                                                |         |         |
| 14.  | Finger withdrawn and sample allowed to freely flow into cylindrical measure?                                          |         |         |
| 15.  | After funnel empties, excess material struck off with spatula correctly?                                              |         |         |
| 16.  | Care taken to avoid any vibration or disturbance?                                                                     |         |         |
| 17.  | Adhering grains brushed off before weighing the cylindrical measure?                                                  |         |         |
| 18.  | Mass of the cylindrical measure and contents determined to nearest 0.1 g?                                             |         |         |
| 19.  | Sample recombined and stirred until homogenous?                                                                       |         |         |
| 20.  | Procedure Steps 3 through 9 repeated?                                                                                 |         |         |
| 21.  | Uncompacted void content (U <sub>s</sub> ) calculated for each determination to nearest 0.1 percent?                  |         |         |
| 22.  | Results of both determinations $(U_m)$ averaged to nearest 0.1 percent and reported to the nearest 1 percent?         |         |         |

| First Attempt: Pass   | Fail | Second Attempt: | Pass | Fail |
|-----------------------|------|-----------------|------|------|
| Signature of Examiner |      |                 |      |      |

Comments:

## WSDOT Errata to FOP for AASHTO T 308

## Determining the Asphalt Binder Content of Asphalt Mixtures by the Ignition Method

WAQTC FOP for AASHTO T 308 has been adopted by WSDOT with the following changes:

Procedure - Method B (External Balance) - Method not recognized by WSDOT.

Annex – Correction Factors

Asphalt Binder and Aggregate

Asphalt binder correction factor – Shall read as below:

A correction factor must be established by testing a set of correction specimens for each Job Mix Formula (JMF).

Aggregate correction factor - Method not recognized by WSDOT.

Procedure

Steps 9 - 13 not recognized by WSDOT.

### DETERMINING THE ASPHALT BINDER CONTENT OF ASPHALT MIXTURES BY THE IGNITION METHOD FOP FOR AASHTO T 308

#### Scope

This procedure covers the determination of asphalt binder content of asphalt mixtures by ignition of the binder in accordance with AASHTO T 308-18.

### Overview

The sample is heated in a furnace at 538°C (1000°F) or less; samples may be heated by convection or direct infrared irradiation (IR). The aggregate remaining after burning can be used for sieve analysis using the FOP for AASHTO T 30.

Some agencies allow the use of recycled asphalt mixtures. When using recycled asphalt mixtures, check with the agency for specific correction procedures.

Asphalt binder in the asphalt mixture is ignited in a furnace. Asphalt binder content is calculated as the percentage difference between the initial mass of the asphalt mixture and the mass of the residual aggregate, with the asphalt binder correction factor, and moisture content subtracted. The asphalt binder content is expressed as percent of moisture-free mix mass.

Two methods, A and B, are presented.

## Apparatus

*Note 1:* The apparatus must be calibrated for the specific mix design. See "Correction Factors" at the end of this FOP.

The apparatus for the Methods A and B is the same except that the furnace for Method A requires an internal balance.

• Ignition Furnace: A forced-air ignition furnace that heats the specimens by either the convection or direct IR irradiation method. The convection-type furnace must be capable of maintaining the temperature at  $538 \pm 5^{\circ}$ C ( $1000 \pm 9^{\circ}$ F).

For Method A, the furnace will be equipped with an internal scale thermally isolated from the furnace chamber and accurate to 0.1 g. The scale shall be capable of determining the mass of a 3500 g sample in addition to the sample baskets. A data collection system will be included so that mass can be automatically determined and displayed during the test. The furnace shall have a built-in computer program to calculate the change in mass of the sample baskets and provide for the input of a correction factor for aggregate loss. The furnace shall provide a printed ticket with the initial specimen mass, specimen mass loss, temperature compensation, correction factor, corrected asphalt binder content, test time, and test temperature. The furnace shall provide an audible alarm and indicator light when the sample mass loss does not exceed 0.01 percent of the total sample mass for three consecutive minutes. Perform lift test according to manufacturer's instructions weekly during use, if applicable.

48\_T308\_short\_20

Asphalt 16-1

T 308

WAQTC

*Note 2:* The furnace shall be designed to permit the operator to change the ending mass loss percentage from 0.01 percent to 0.02 percent.

For both Method A and Method B, the furnace chamber dimensions shall be adequate to accommodate a 3500 g sample. The furnace door shall be equipped so that it cannot be opened during the ignition test. A method for reducing furnace emissions shall be provided and the furnace shall be vented so that no emissions escape into the laboratory. The furnace shall have a fan to pull air through the furnace to expedite the test and to eliminate the escape of smoke into the laboratory.

- Sample Basket Assembly: consisting of sample basket(s), catch pan, and basket guards. Sample basket(s) will be of appropriate size allowing samples to be thinly spread and allowing air to flow through and around the sample particles. Sets of two or more baskets shall be nested. A catch pan: of sufficient size to hold the sample basket(s) so that aggregate particles and melting asphalt binder falling through the screen mesh are caught. Basket guards will completely enclose the basket and be made of screen mesh, perforated stainless steel plate, or other suitable material.
- Thermometer, or other temperature measuring device, with a temperature range of 10 260°C (50-500°F).
- Oven capable of maintaining  $110 \pm 5^{\circ}C (230 \pm 9^{\circ}F)$ .
- Balance or scale: Capacity sufficient for the sample mass and conforming to the requirements of M 231, Class G2.
- **Safety equipment**: Safety glasses or face shield, high temperature gloves, long sleeved jacket, a heat resistant surface capable of withstanding 650°C (1202°F), a protective cage capable of surrounding the sample baskets during the cooling period, and a particle mask for use during removal of the sample from the basket assembly.
- Miscellaneous equipment: A pan larger than the sample basket(s) for transferring sample after ignition, spatulas, bowls, and wire brushes.

#### Sampling

- 1. Obtain samples of asphalt mixture in accordance with the FOP for AASHTO R 97.
- 2. Reduce asphalt mixture samples in accordance with the FOP for AASHTO R 47.
- 3. If the mixture is not sufficiently soft to separate with a spatula or trowel, place it in a large flat pan in an oven at  $110 \pm 5^{\circ}$ C (230  $\pm 9^{\circ}$ F) until soft enough.
- 4. Test sample size shall conform to the mass requirement shown in Table 1.

*Note 3:* When the mass of the test specimen exceeds the capacity of the equipment used or for large samples of fine mixes, the test specimen may be divided into suitable increments, tested, and the results appropriately combined through a weighted average for calculation of the asphalt binder content.

Asphalt 16-2

| Nominal<br>Maximum<br>Aggregate Size*<br>mm (in.) | Minimum<br>Mass<br>Specimen<br>g | Maximum<br>Mass<br>Specimen<br>g |
|---------------------------------------------------|----------------------------------|----------------------------------|
| 37.5 (1 ½)                                        | 4000                             | 4500                             |
| 25.0 (1)                                          | 3000                             | 3500                             |
| 19.0 (3/4)                                        | 2000                             | 2500                             |
| 12.5 (1/2)                                        | 1500                             | 2000                             |
| 9.5 (3/8)                                         | 1200                             | 1700                             |
| 4.75 (No. 4)                                      | 1200                             | 1700                             |

\* One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

# Procedure – Method A (Internal Balance)

- 1. For the convection-type furnace, preheat the ignition furnace to  $538 \pm 5^{\circ}C (1000 \pm 9^{\circ}F)$  or to the temperature determined in the "Correction Factors" section, Step 9 of this method. Manually record the furnace temperature (set point) before the initiation of the test if the furnace does not record automatically. For the direct IR irradiation-type furnace, use the same burn profile as used during the correction factor determination.
- 2. Dry the sample to constant mass, according to the FOP for AASHTO T 329; or determine the moisture content of a companion sample in accordance with the FOP for AASHTO T 329.
- 3. Determine and record the mass to the nearest 0.1 g of the sample basket assembly.
- 4. Evenly distribute the sample in the sample basket assembly, taking care to keep the material away from the edges of the basket. Use a spatula or trowel to level the sample.
- 5. Determine and record the total mass of the sample and sample basket assembly at room temperature to the nearest 0.1 g. Calculate and record the initial mass of the sample (total mass minus the mass of the sample basket assembly) to the nearest 0.1 g. Designate this mass as (M<sub>i</sub>).
- 6. Record the correction factor or input into the furnace controller for the specific asphalt mixture.
- 7. Input the initial mass of the sample (M<sub>i</sub>) into the ignition furnace controller. Verify that the correct mass has been entered.
- 8. Verify the furnace scale is reading zero, if not, reset to zero.

*CAUTION:* Operator should wear safety equipment – high temperature gloves, face shield, fire-retardant shop coat – when opening the door to load or unload the sample.

48\_T308\_short\_20

Asphalt 16-3

T 308

#### ASPHALT

#### WAQTC

- 9. Open the chamber door and gently set the sample basket assembly in the furnace. Carefully position the sample basket assembly so it is not in contact with the furnace wall. Close the chamber door and verify that the sample mass displayed on the furnace scale equals the total mass of the sample and sample basket assembly recorded in Step 5 within ±5 g.
  - *Note 4:* Furnace temperature will drop below the set point when the door is opened but will recover when the door is closed, and ignition begins. Sample ignition typically increases the temperature well above the set point relative to sample size and asphalt binder content.
- 10. Initiate the test by pressing the start button. This will lock the sample chamber and start the combustion blower.

Safety note: Do not attempt to open the furnace door until the asphalt binder has been completely burned off.

11. Allow the test to continue until the stable light and audible stable indicator indicate that the change in mass does not exceed 0.01 percent for three consecutive minutes. Press the stop button. This will unlock the sample chamber and cause the printer to print out the test results.

*Note 5:* An ending mass loss percentage of 0.02 may be used, if allowed by the agency, when aggregate that exhibits an excessive amount of loss during ignition testing is used.

- 12. Open the chamber door, remove the sample basket assembly, and place on the cooling plate or block. Place the protective cage over the sample basket assembly and allow it to cool to room temperature (approximately 30 minutes).
- 13. Determine and record the total after ignition mass to the nearest 0.1 g. Calculate and record the mass of the sample, after ignition (total after ignition mass minus the mass of the sample basket assembly) to the nearest 0.1 g. Designate this mass as  $M_{f.}$
- 14. Use the asphalt binder content percentage from the printed ticket. Subtract the moisture content and the correction factor if not entered into the furnace controller from the printed ticket asphalt binder content and report the difference as the corrected asphalt binder content.

Asphalt binder content percentage can also be calculated using the formula from "Method B" Step 16.

Asphalt 16-4

ASPHALT

#### WAQTC

#### Calculation

**Corrected asphalt binder content:** 

 $P_b = BC - MC - C_f^*$ 

\*If correction factor is not entered into the furnace controller

where:

- $P_b =$  the corrected asphalt binder content as a percent by mass of the asphalt mixture
- BC = asphalt binder content shown on printed ticket
- MC = moisture content of the companion asphalt mixture sample, percent, as determined by the FOP for AASHTO T 329 (if the specimen was oven-dried before initiating the procedure, MC=0)
- $C_{f}$  = correction factor as a percent by mass of the asphalt mixture sample

# Procedure – Method B (External Balance)

- 1. Preheat the ignition furnace to  $538 \pm 5^{\circ}$ C ( $1000 \pm 9^{\circ}$ F) or to the temperature determined in the "Correction Factor" section, Step 9 of this method. Manually record the furnace temperature (set point) before the initiation of the test if the furnace does not record automatically.
- 2. Dry the sample to constant mass, according to the FOP for AASHTO T 329; or determine the moisture content of a companion sample in accordance with the FOP for AASHTO T 329.
- 3. Determine and record the mass of the sample basket assembly to the nearest 0.1 g.
- 4. Place the sample basket(s) in the catch pan. Evenly distribute the sample in the sample basket(s), taking care to keep the material away from the edges of the basket. Use a spatula or trowel to level the sample.
- 5. Determine and record the total mass of the sample and sample basket assembly at room temperature to the nearest 0.1 g. Calculate and record the initial mass of the sample (total mass minus the mass of the sample basket assembly) to the nearest 0.1 g. Designate this mass as (M<sub>i</sub>).
- 6. Record the correction factor for the specific asphalt mixture.
- 7. Open the chamber door and gently set the sample basket assembly in the furnace. Carefully position the sample basket assembly so it is not in contact with the furnace wall. Burn the asphalt mixture sample in the furnace for 45 minutes or the length of time determined in the "Correction Factors" section.

48\_T308\_short\_20

Asphalt 16-5

ASPHALT

WAQTC

- 8. Open the chamber door, remove the sample basket assembly, and place on the cooling plate or block. Place the protective cage over the sample and allow it to cool to room temperature (approximately 30 min).
- 9. Determine and record the total after ignition mass to the nearest 0.1 g. Calculate and record the mass of the sample, after ignition (total after ignition mass minus the mass of the sample basket assembly) to the nearest 0.1 g.
- 10. Place the sample basket assembly back into the furnace.
- 11. Burn the sample for at least 15 minutes after the furnace reaches the set temperature.
- 12. Open the chamber door, remove the sample basket assembly, and place on the cooling plate or block. Place the protective cage over the sample basket assembly and allow it to cool to room temperature (approximately 30 min.).
- 13. Determine and record the total after ignition mass to the nearest 0.1 g. Calculate and record the mass of the sample, after ignition (total after ignition mass minus the mass of the sample basket assembly) to the nearest 0.1 g.
- 14. Repeat Steps 10 through 13 until the change in measured mass of the sample after ignition does not exceed 0.01 percent of the previous sample mass after ignition.

- 15. Determine and record the total after ignition mass to the nearest 0.1 g. Calculate and record the mass of the sample, after ignition (total after ignition mass minus the mass of the sample basket assembly) to the nearest 0.1 g. Designate this mass as M<sub>f</sub>.
- 16. Calculate the asphalt binder content of the sample.

# Calculations

Calculate the asphalt binder content of the sample as follows:

$$P_b = \frac{M_i - M_f}{M_i} \times 100 - MC - C_f$$

where:

- $P_b =$  the corrected asphalt binder content as a percent by mass of the asphalt mixture sample
- $M_{\rm f}$  = the final mass of aggregate remaining after ignition, g
- $M_i$  = the initial mass of the asphalt mixture sample before ignition, g
- MC= moisture content of the companion asphalt mixture sample, percent, as determined by the FOP for AASHTO T 329 (if the specimen was oven-dried before initiating the procedure, MC = 0).
- $C_f = -$  correction factor as a percent by mass of the asphalt mixture sample

| 48 | T308 | short | 20 |
|----|------|-------|----|
|    |      |       |    |

Asphalt 16-6

*Note 6:* An ending mass loss percentage of 0.02 may be used, if allowed by the agency, when aggregate that exhibits an excessive amount of loss during ignition testing is used.

WAQTC

#### FOP AASHTO T 308 (20)

#### Example

| Correction Factor                            | = 0.42%    |
|----------------------------------------------|------------|
| Moisture Content                             | = 0.04%    |
| Initial Mass of Sample and Basket            | = 5292.7 g |
| Mass of Basket Assembly                      | = 2931.5 g |
| Mi                                           | = 2361.2 g |
| Total Mass after First ignition + basket     | = 5154.4 g |
| Sample Mass after First ignition             | = 2222.9 g |
| Sample Mass after additional 15 min ignition | = 2222.7 g |

%*change* = 
$$\frac{2222.9 \ g - 2222.7 \ g}{2222.9 \ g} \times 100 = 0.009\%$$

% change is not greater than 0.01 percent, so  $M_f = 2222.7 \text{ g}$ 

 $P_b = \frac{2361.2 \ g - 2222.7 \ g}{2361.2 \ g} \times 100 - 0.42\% - 0.04\% = 5.41\%$ 

 $P_b = 5.41\%$ 

### Gradation

1. Empty contents of the basket(s) into a flat pan, being careful to capture all material. Use a small wire brush to ensure all residual fines are removed from the baskets.

Note 7: Particle masks are a recommended safety precaution.

2. Perform the gradation analysis in accordance with the FOP for AASHTO T 30.

#### ASPHALT

#### WAQTC

# Report

- On forms approved by the agency
- Sample ID
- Method of test (A or B)
- Corrected asphalt binder content, Pb, per agency standard
- Correction factor,  $C_f$ , to the nearest 0.01 percent
- Temperature compensation factor (Method A only)
- Total percent loss
- Sample mass
- Moisture content to the nearest 0.01%
- Test temperature

Attach the original printed ticket with all intermediate values (continuous tape) to the report for furnaces with internal balances.

48\_T308\_short\_20

Asphalt 16-8

# **ANNEX – CORRECTION FACTORS**

# ASPHALT BINDER AND AGGREGATE

(Mandatory Information)

Asphalt binder content results may be affected by the type of aggregate in the mixture and by the ignition furnace. Asphalt binder and aggregate correction factors must, therefore, be established by testing a set of correction specimens for each Job Mix Formula (JMF) mix design. Each ignition furnace will have its own unique correction factor determined in the location where testing will be performed.

This procedure must be performed before any acceptance testing is completed, and repeated each time there is a change in the mix ingredients or design. Any changes greater than 5 percent in stockpiled aggregate proportions should require a new correction factor.

All correction samples will be prepared by a central / regional laboratory unless otherwise directed.

**Asphalt binder correction factor:** A correction factor must be established by testing a set of correction specimens for each Job Mix Formula (JMF). Certain aggregate types may result in unusually high correction factors (> 1.00 percent). Such mixes should be corrected and tested at a lower temperature as described below.

**Aggregate correction factor:** Due to potential aggregate breakdown during the ignition process, a correction factor will need to be determined for the following conditions:

- a. Aggregates that have a proven history of excessive breakdown
- b. Aggregate from an unknown source.

This correction factor will be used to adjust the acceptance gradation test results obtained according to the FOP for AASHTO T 30.

# Procedure

- 1. Obtain samples of aggregate in accordance with the FOP for AASHTO R 90.
- 2. Obtain samples of asphalt binder in accordance with the FOP for AASHTO R 66.

*Note 8:* Include other additives that may be required by the JMF.

- 3. Prepare an initial, or "butter," mix at the design asphalt binder content. Mix and discard the butter mix before mixing any of the correction specimens to ensure accurate asphalt content.
- 4. Prepare two correction specimens at the JMF design asphalt binder content. Aggregate used for correction specimens shall be sampled from material designated for use on the project. An agency approved method will be used to combine aggregate. An additional "blank" specimen shall be batched and tested for aggregate gradation in accordance with the FOP for AASHTO T 30. The gradation from the "blank" shall fall within the agency specified mix design tolerances.
- 5. Place the freshly mixed specimens directly into the sample basket assembly. If mixed specimens are allowed to cool before placement in the sample basket assembly, the

Asphalt 16-9

#### ASPHALT

specimens must be dried to constant mass according to the FOP for AASHTO T 329. Do not preheat the sample basket assembly.

- 6. Test the specimens in accordance with Method A or Method B of the procedure.
- 7. Once both of the correction specimens have been burned, determine the asphalt binder content for each specimen by calculation or from the printed ignition furnace tickets, if available.
- 8. If the difference between the asphalt binder contents of the two specimens exceeds 0.15 percent, repeat with two more specimens and, from the four results, discard the high and low result. Determine the correction factor from the two original or remaining results, as appropriate. Calculate the difference between the actual and measured asphalt binder contents for each specimen to 0.01 percent. The asphalt binder correction factor, Cf, is the average of the differences expressed as a percent by mass of asphalt mixture.
- 9. If the asphalt binder correction factor exceeds 1.00 percent, the test temperature must be lowered to 482 ± 5°C (900 ± 9°F) and new samples must be burned. If the correction factor is the same or higher at the lower temperature, it is permissible to use the higher temperature. The temperature for determining the asphalt binder content of asphalt mixture samples by this procedure shall be the same temperature determined for the correction samples.
- 10. For the direct IR irradiation-type burn furnaces, the **default** burn profile should be used for most materials. The operator may select burn-profile Option 1 or Option 2 to optimize the burn cycle. The burn profile for testing asphalt mixture samples shall be the same burn profile selected for correction samples.

**Option 1** is designed for aggregate that requires a large asphalt binder correction factor (greater than 1.00 percent) – typically very soft aggregate (such as dolomite).

**Option 2** is designed for samples that may not burn completely using the **default** burn profile.

- 11. Perform a gradation analysis on the residual aggregate in accordance with the FOP for AASHTO T 30, if required. The results will be utilized in developing an "Aggregate Correction Factor" and should be calculated and reported to 0.1 percent.
- 12. From the gradation results subtract the percent passing for each sieve, for each sample, from the percent passing each sieve of the "Blank" specimen gradation results from Step 4.
- 13. Determine the average difference of the two values. If the difference for any single sieve exceeds the allowable difference of that sieve as listed in Table 2, then aggregate gradation correction factors (equal to the resultant average differences) for all sieves shall be applied to all acceptance gradation test results determined by the FOP for AASHTO T 30. If the 75  $\mu$ m (No. 200) is the only sieve outside the limits in Table 2, apply the aggregate correction factor to only the 75  $\mu$ m (No. 200) sieve.

48\_T308\_short\_20

Asphalt 16-10

Pub. October 2021

WSDOT Materials Manual M 46-01.40 January 2022

Table 2Permitted Sieving Difference

| Sieve                                                                    | Allowable Difference |
|--------------------------------------------------------------------------|----------------------|
| Sizes larger than or equal to 2.36 mm (No.8)                             | ± 5.0%               |
| Sizes larger than to 75 $\mu m$ (No.200) and smaller than 2.36 mm (No.8) | ± 3.0%               |
| Sizes 75 µm (No.200) and smaller                                         | ± 0.5%               |

#### **Examples:**

| Sieve Size<br>mm (in.) | Correction<br>Factor<br>Blank Sample<br>% Passing | Correction<br>Factor<br>Sample #1<br>% Passing | Correction<br>Factor<br>Sample #2<br>% Passing | Difference<br>1 / 2 | Avg.<br>Diff. | Sieves to<br>adjust |
|------------------------|---------------------------------------------------|------------------------------------------------|------------------------------------------------|---------------------|---------------|---------------------|
| 19.0 (3/4)             | 100                                               | 100                                            | 100                                            | 0/0                 | 0.0           |                     |
| 12.5 (1/2)             | 86.3                                              | 87.4                                           | 86.4                                           | -1.1/-0.1           | -0.6          |                     |
| 9.5 (3/8)              | 77.4                                              | 76.5                                           | 78.8                                           | +0.9/-1.4           | -0.3          |                     |
| 4.75 (No. 4)           | 51.5                                              | 53.6                                           | 55.9                                           | -2.1/-4.4           | -3.3          |                     |
| 2.36 (No. 8)           | 34.7                                              | 36.1                                           | 37.2                                           | -1.4/-2.5           | -2.0          |                     |
| 01.18 (No. 16)         | 23.3                                              | 25.0                                           | 23.9                                           | -1.7/-0.6           | -1.2          |                     |
| 0.600 (No. 30)         | 16.4                                              | 19.2                                           | 18.1                                           | -2.8/-1.7           | -2.3          |                     |
| 0.300 (No. 50)         | 12.0                                              | 11.1                                           | 12.7                                           | +0.9/-0.7           | +0.1          |                     |
| 0.150 (No. 100)        | 8.1                                               | 9.9                                            | 6.3                                            | -1.8/+1.8           | 0.0           |                     |
| 75 μm (No. 200)        | 5.5                                               | 5.9                                            | 6.2                                            | -0.4/-0.7           | -0.6          | - 0.6               |

In this example, all gradation test results performed on the residual aggregate (FOP for AASHTO T 30) would have an aggregate correction factor applied to the percent passing the 75  $\mu$ m (No. 200) sieve. The correction factor must be applied because the average difference on the 75  $\mu$ m (No. 200) sieve is outside the tolerance from Table 2.

#### ASPHALT

# WAQTC

In the following example, aggregate correction factors would be applied to each sieve because the average difference on the 4.75 mm (No. 4) is outside the tolerance from Table 2.

| Sieve Size<br>mm (in.) | Correction<br>Factor<br>Blank Sample<br>% Passing | Correction<br>Factor<br>Sample #1<br>% Passing | Correction<br>Factor<br>Sample #2<br>% Passing | Difference<br>1 / 2 | Avg.<br>Diff. | Sieves to<br>adjust |
|------------------------|---------------------------------------------------|------------------------------------------------|------------------------------------------------|---------------------|---------------|---------------------|
| 19.0 (3/4)             | 100                                               | 100                                            | 100                                            | 0/0                 | 0.0           | 0.0                 |
| 12.5 (1/2)             | 86.3                                              | 87.4                                           | 86.4                                           | -1.1/-0.1           | -0.6          | -0.6                |
| 9.5 (3/8)              | 77.4                                              | 76.5                                           | 78.8                                           | +0.9/-1.4           | -0.3          | -0.3                |
| 4.75 (No. 4)           | 51.5                                              | 55.6                                           | 57.9                                           | -4.1/-6.4           | -5.3          | -5.3                |
| 2.36 (No. 8)           | 34.7                                              | 36.1                                           | 37.2                                           | -1.4/-2.5           | -2.0          | -2.0                |
| 01.18 (No. 16)         | 23.3                                              | 25.0                                           | 23.9                                           | -1.7/-0.6           | -1.2          | -1.2                |
| 0.600 (No. 30)         | 16.4                                              | 19.2                                           | 18.1                                           | -2.8/-1.7           | -2.3          | -2.3                |
| 0.300 (No. 50)         | 12.0                                              | 11.1                                           | 12.7                                           | +0.9/-0.7           | +0.1          | +0.1                |
| 0.150 (No. 100)        | 8.1                                               | 9.9                                            | 6.3                                            | -1.8/+1.8           | 0.0           | 0.0                 |
| 75 μm (No. 200)        | 5.5                                               | 5.9                                            | 6.2                                            | -0.4/-0.7           | -0.6          | -0.6                |

48\_T308\_short\_20

# PERFORMANCE EXAM CHECKLIST

#### DETERMINING THE ASPHALT BINDER CONTENT OF ASPHALT MIXTURES BY THE IGNITION METHOD FOP FOR AASHTO T 308

| Participant Name                             | Exam Date                                 |
|----------------------------------------------|-------------------------------------------|
| Record the symbols "P" for passing or "F" fo | or failing on each step of the checklist. |

| Pr | ocedure Element                                                                                          | Trial 1 Trial 2 |
|----|----------------------------------------------------------------------------------------------------------|-----------------|
| 1. | Oven at correct temperature $538 \pm 5^{\circ}C (1000 \pm 9^{\circ}F)$ or correction factor temperature? |                 |
|    | Or: for IR ovens, correct burn profile applied?                                                          |                 |
| 2. | Sample reduced to correct size?                                                                          | <u> </u>        |
| 3. | Asphalt mixture sample or companion moisture sample taken and dried per FOP for AASHTO T 329?            |                 |
| 4. | Mass of sample basket assembly recorded to 0.1 g?                                                        |                 |
| 5. | With pan below basket(s) sample evenly distributed in basket(s)?                                         |                 |
| 6. | Mass of sample basket and sample recorded to 0.1 g?                                                      |                 |
| 7. | Sample mass conforms to the required mass?                                                               |                 |
| 8. | Method A                                                                                                 |                 |
|    | a. Initial mass entered into furnace controller?                                                         |                 |
|    | b. Sample correctly placed into furnace?                                                                 |                 |
|    | c. Test continued until stable indicator signals?                                                        |                 |
|    | d. Uncorrected asphalt binder content obtained on printed ticket?                                        |                 |
|    | e. Sample mass determined to nearest 0.1 g.?                                                             |                 |
| 9. | Method B                                                                                                 |                 |
|    | a. Sample correctly placed into furnace?                                                                 |                 |
|    | b. Sample burned for 45 min or time determined by correction process?                                    |                 |
|    | c. Sample cooled to room temperature?                                                                    |                 |
|    | d. Sample burned to constant mass?                                                                       |                 |
|    | e. Sample mass determined to nearest 0.1 g.?                                                             |                 |
|    | f. Uncorrected asphalt binder content calculated correctly and recorded?                                 |                 |
|    | OVER                                                                                                     |                 |

Asphalt 6-19

| ASPHALT                           |                  |           | WAQTC       | FOP A.              | ASHTO T 3( | 08 (19) |
|-----------------------------------|------------------|-----------|-------------|---------------------|------------|---------|
| Procedure Elem                    | ient             |           |             |                     | Trial 1    | Trial 2 |
| 10. Asphalt bind                  | er content corre | cted for  | Correction  | Factor if needed?   |            |         |
| 11. Asphalt bind<br>T 329 if need |                  | cted for  | moisture p  | er the FOP for AASH | ITO        |         |
| 12. Corrected asp                 | phalt binder con | tent reco | orded?      |                     |            |         |
| 13. Contents of t                 | he basket(s) car | efully er | nptied into | a pan?              |            |         |
|                                   |                  |           |             |                     |            |         |
| Comments:                         | First attempt:   | Pass      | Fail        | Second attempt      | : Pass     | Fail    |

 Examiner Signature
 \_\_\_\_\_\_\_WAQTC #:\_\_\_\_\_\_

### TEMPERATURE OF FRESHLY MIXED PORTLAND CEMENT CONCRETE FOP FOR AASHTO T 309

#### Scope

This procedure covers the determination of the temperature of freshly mixed Portland Cement Concrete in accordance with AASHTO T 309-20.

**Warning**—Fresh Hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.

#### Apparatus

- Container The container shall be made of non-absorptive material and large enough to provide at least 75 mm (3 in.) of concrete in all directions around the sensor; concrete cover must also be a least three times the nominal maximum size of the coarse aggregate.
- Temperature measuring device The temperature measuring device shall be calibrated and capable of measuring the temperature of the freshly mixed concrete to ±0.5°C (±1°F) throughout the temperature range likely to be encountered. Partial immersion liquid-inglass thermometers (and possibly other types) shall have a permanent mark to which the device must be immersed without applying a correction factor.
- Reference temperature measuring device The reference temperature measuring device shall be a thermometric device readable to 0.2°C (0.5°F) that has been verified and calibrated. The calibration certificate or report indicating conformance to the requirements of ASTM E 77 shall be available for inspection.

#### **Calibration of Temperature Measuring Device**

Each temperature measuring device shall be verified for accuracy annually and whenever there is a question of accuracy. Calibration shall be performed by comparing readings on the temperature measuring device with another calibrated instrument at two temperatures at least 15°C or 27°F apart.

#### **Sample Locations and Times**

The temperature of freshly mixed concrete may be measured in the transporting equipment, in forms, or in sample containers, provided the sensor of the temperature measuring device has at least 75 mm (3 in.) of concrete cover in all direction around it.

Complete the temperature measurement of the freshly mixed concrete within 5 minutes of obtaining the sample.

37\_T309\_short\_20

Concrete 10-1

#### CONCRETE

WAQTC

## Procedure

- 1. Dampen the sample container.
- 2. Obtain the sample in accordance with the FOP for WAQTC TM 2.
- 3. Place sensor of the temperature measuring device in the freshly mixed concrete so that it has at least 75 mm (3 in.) of concrete cover in all directions around it.
- 4. Gently press the concrete in around the sensor of the temperature measuring device at the surface of the concrete so that air cannot reach the sensor.
- 5. Leave the sensor of the temperature measuring device in the freshly mixed concrete for a minimum of two minutes, or until the temperature reading stabilizes.
- 6. Complete the temperature measurement of the freshly mixed concrete within 5 minutes of obtaining the sample.
- 7. Read and record the temperature to the nearest  $0.5^{\circ}C (1^{\circ}F)$ .

# Report

- Results on forms approved by the agency
- Sample ID
- Measured temperature of the freshly mixed concrete to the nearest 0.5°C (1°F)

37\_T309\_short\_20

Concrete 10-2

### PERFORMANCE EXAM CHECKLIST

# TEMPERATURE OF FRESHLY MIXED CONCRETE FOP FOR AASHTO T 309

| Pa | rticipant Name Exam Date                                                                                                        |         |         |
|----|---------------------------------------------------------------------------------------------------------------------------------|---------|---------|
| Re | cord the symbols "P" for passing or "F" for failing on each step of the checklis                                                | t.      |         |
| Pr | ocedure Element                                                                                                                 | Trial 1 | Trial 2 |
| 1. | Obtain sample of concrete large enough to provide a minimum of 75 mm (3 in.) of concrete cover around sensor in all directions? |         |         |
| 2. | Place temperature measuring device in sample with a minimum of 75 mm (3 in.) cover around sensor?                               |         |         |
| 3. | Gently press concrete around thermometer?                                                                                       |         |         |
| 4. | Read temperature after a minimum of 2 minutes or when temperature reading stabilizes?                                           |         |         |
| 5. | Complete temperature measurement within 5 minutes of obtaining sample?                                                          |         |         |
| 6. | Record temperature to nearest 0.5°C (1°F)?                                                                                      |         |         |
| Co | omments: First attempt: PassFail Second attempt                                                                                 | : Pass  | Fail    |
|    |                                                                                                                                 |         |         |
|    |                                                                                                                                 |         |         |
|    |                                                                                                                                 |         |         |
|    |                                                                                                                                 |         |         |
| Ex | aminer SignatureWAQTC #:                                                                                                        |         |         |

This checklist is derived, in part, from copyrighted material printed in ACI CP-1, published by the American Concrete Institute.

CONCRETE

WAQTC

FOP AASHTO T 309 (09)

21\_T309\_pr\_09

Concrete 4-8

# WSDOT Errata to FOP for AASHTO T 310

# *In-Place Density and Moisture Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)*

WAQTC FOP for AASHTO T 310 has been adopted by WSDOT with the following changes:

## Procedure

Replace step 1 with below:

- 1. WSDOT requires test location selected per WSDOT SOP 615.
- 6. Place the gauge on the prepared surface so the source rod can enter the hole without disturbing loose material.

Include note below:

*Note:* For alignment purposes, the user may expose the source rod for a maximum of ten seconds.

- 10. Perform one of the following methods, per agency requirements:
  - a. Method A Single Direction: Method not recognized by WSDOT.
- 11. Step not required by WSDOT.
- 12. Step not required by WSDOT.Replace step 13 with below:
- 13. Determine the dry density by one of the following:
  - a. If the moisture content is determined by nuclear methods, use gauge dry density readings directly.
  - b. If moisture content is determined by FOP for AASHTO T 255/T 265, compute dry density by dividing the wet density from the nuclear gauge by 1 + moisture content expressed as a decimal.

#### Percent Compaction

Determined using WSDOT SOP 615.

# IN-PLACE DENSITY AND MOISTURE CONTENT OF SOIL AND SOIL-AGGREGATE BY NUCLEAR METHODS (SHALLOW DEPTH) FOP FOR AASHTO T 310

### Scope

This procedure covers the determination of density, moisture content, and relative compaction of soil, aggregate, and soil-aggregate mixes in accordance with AASHTO T 310-19. This procedure provides a rapid, nondestructive technique for determining the inplace wet density and moisture content of soil, aggregate, and soil-aggregate mixes. This field operating procedure is derived from AASHTO T 310. The nuclear moisture-density gauge is used in the direct transmission mode.

### Apparatus

- Nuclear density gauge with the factory matched standard reference block.
- Drive pin, guide/scraper plate, and hammer for testing in direct transmission mode.
- Transport case for properly shipping and housing the gauge and tools.
- Instruction manual for the specific make and model of gauge.
- Radioactive materials information and calibration packet containing:
  - Daily Standard Count Log.
  - Factory and Laboratory Calibration Data Sheet.
  - Leak Test Certificate.
  - Shippers Declaration for Dangerous Goods.
  - Procedure Memo for Storing, Transporting and Handling Nuclear Testing Equipment.
  - Other radioactive materials documentation as required by local regulatory requirements.
- Sealable containers and utensils for moisture content determinations.

# **Radiation Safety**

This method does not purport to address all of the safety problems associated with its use. This test method involves potentially hazardous materials. The gauge utilizes radioactive materials that may be hazardous to the health of the user unless proper precautions are taken. Users of this gauge must become familiar with the applicable safety procedures and governmental regulations. All operators will be trained in radiation safety prior to operating nuclear density gauges. Some agencies require the use of personal monitoring devices such as a thermoluminescent dosimeter or film badge. Effective instructions together with routine safety procedures such as source leak tests, recording and evaluation of personal monitoring device data, etc., are a recommended part of the operation and storage of this gauge.

49\_T310\_short\_20

E&B/ID 17-1

Pub. October 2021

T 310

```
IN-PLACE DENSITY
```

WAQTC

# Calibration

Calibrate the nuclear gauge as required by the agency. This calibration may be performed by the agency using manufacturer's recommended procedures or by other facilities approved by the agency. Verify or re-establish calibration curves, tables, or equivalent coefficients every 12 months.

# Standardization

- 1. Turn the gauge on and allow it to stabilize (approximately 10 to 20 minutes) prior to standardization. Leave the power on during the day's testing.
- 2. Standardize the nuclear gauge at the construction site at the start of each day's work and as often as deemed necessary by the operator or agency. Daily variations in standard count shall not exceed the daily variations established by the manufacturer of the gauge. If the daily variations are exceeded after repeating the standardization procedure, the gauge should be repaired and/or recalibrated.
- 3. Record the standard count for both density and moisture in the Daily Standard Count Log. The exact procedure for standard count is listed in the manufacturer's Operator's Manual.

Note 1: New standard counts may be necessary more than once a day. See agency requirements.

# Overview

There are two methods for determining in-place density of soil / soil aggregate mixtures. See agency requirements for method selection.

- Method A Single Direction
- Method B Two Direction

# Procedure

- 1. Select a test location(s) randomly and in accordance with agency requirements. Test sites should be relatively smooth and flat and meet the following conditions:
  - a. At least 10 m (30 ft) away from other sources of radioactivity
  - b. At least 3 m (10 ft) away from large objects
  - c. The test site should be at least 150 mm (6 in.) away from any vertical projection unless the gauge is corrected for trench wall effect.
- 2. Remove all loose and disturbed material and remove additional material as necessary to expose the top of the material to be tested.
- 3. Prepare a flat area sufficient in size to accommodate the gauge. Plane the area to a smooth condition so as to obtain maximum contact between the gauge and the material being tested. For Method B, the flat area must be sufficient to permit rotating the gauge 90 or 180 degrees about the source rod.

- 4. Fill in surface voids beneath the gauge with fines of the material being tested passing the 4.75 mm (No. 4) sieve or finer. Smooth the surface with the guide plate or other suitable tool. The depth of the filler should not exceed approximately 3 mm (1/8 in.).
- 5. Make a hole perpendicular to the prepared surface using the guide plate and drive pin. The hole shall be at least 50 mm (2 in.) deeper than the desired source rod depth and shall be aligned such that insertion of the source rod will not cause the gauge to tilt from the plane of the prepared area. Remove the drive pin by pulling straight up and twisting the extraction tool.
- 6. Place the gauge on the prepared surface so the source rod can enter the hole without disturbing loose material.
- 7. Lower the source rod into the hole to the desired test depth using the handle and trigger mechanism.
- 8. Seat the gauge firmly by partially rotating it back and forth about the source rod. Ensure the gauge is seated flush against the surface by pressing down on the gauge corners and making sure that the gauge does not rock.
- 9. Pull gently on the gauge to bring the side of the source rod nearest to the scaler / detector firmly against the side of the hole.
- 10. Perform one of the following methods, per agency requirements:
  - a. Method A Single Direction: Take a test consisting of the average of two, oneminute readings, and record both density and moisture data. The two wet density readings should be within 32 kg/m<sup>3</sup> (2.0 lb/ft<sup>3</sup>) of each other. The average of the two wet densities and moisture contents will be used to compute dry density.
  - b. Method B Two Direction: Take a one-minute reading and record both density and moisture data. Rotate the gauge 90 or 180 degrees, pivoting it around the source rod. Reseat the gauge by pulling gently on the gauge to bring the side of the source rod nearest to the scaler/detector firmly against the side of the hole and take a one-minute reading. (In trench locations, rotate the gauge 180 degrees for the second test.) Some agencies require multiple one-minute readings in both directions. Analyze the density and moisture data. A valid test consists of wet density readings in both gauge positions that are within 50 kg/m<sup>3</sup> (3.0 lb/ft<sup>3</sup>). If the tests do not agree within this limit, move to a new location. The average of the wet density and moisture contents will be used to compute dry density.
- 11. If required by the agency, obtain a representative sample of the material, 4 kg (9 lb) minimum, from directly beneath the gauge full depth of material tested. This sample will be used to verify moisture content and / or identify the correct density standard. Immediately seal the material to prevent loss of moisture.

The material tested by direct transmission can be approximated by a cylinder of soil approximately 300 mm (12 in.) in diameter directly beneath the centerline of the radioactive source and detector. The height of the cylinder will be approximately the

#### T 310

**IN-PLACE DENSITY** 

WAQTC

depth of measurement. When organic material or large aggregate is removed during this operation, disregard the test information, and move to a new test site.

- 12. To verify the moisture content from the nuclear gauge, determine the moisture content with a representative portion of the material using the FOP for AASHTO T 255/T 265 or other agency approved methods. If the moisture content from the nuclear gauge is within ±1 percent, the nuclear gauge readings can be accepted. Moisture content verification is gauge and material specific. Retain the remainder of the sample at its original moisture content for a one-point compaction test under the FOP for AASHTO T 272, or for gradation, if required.
- *Note 2:* Example: A gauge reading of 16.8 percent moisture and an oven dry of 17.7 percent are within the ±1 percent requirement. Moisture correlation curves will be developed according to agency guidelines. These curves should be reviewed and possibly redeveloped every 90 days.
- 13. Determine the dry density by one of the following.
  - a. From nuclear gauge readings, compute by subtracting the mass (weight) of the water (kg/m<sup>3</sup> or lb/ft<sup>3</sup>) from the wet density (kg/m<sup>3</sup> or lb/ft<sup>3</sup>) or compute using the percent moisture by dividing wet density from the nuclear gauge by 1 plus the moisture content expressed as a decimal.
  - b. When verification is required and the nuclear gauge readings cannot be accepted, the moisture content is determined by the FOP for AASHTO T 255/T 265 or other agency approved methods. Compute dry density by dividing wet density from the nuclear gauge by 1 plus the moisture content expressed as a decimal.

# **Percent Compaction**

 Percent compaction is determined by comparing the in-place dry density as determined by this procedure to the appropriate agency density standard. For soil or soil-aggregate mixes, these are moisture-density curves developed using the FOP for AASHTO T 99/T 180. When using maximum dry densities from the FOP for AASHTO T 99/T 180 or FOP for AASHTO T 272, it may be necessary to use the Annex in the FOP for T 99/T 180 to determine corrected maximum dry density and optimum moisture content.

For coarse granular materials, the density standard may be density-gradation curves developed using a vibratory method such as AKDOT&PF's ATM 212, ITD's T 74, WSDOT's TM 606, or WFLHD's Humphres.

See appropriate agency policies for use of density standards.

E&B/ID 17-4

IN-PLACE DENSITY

#### WAQTC

#### FOP AASHTO T 310 (20)

#### Calculation

Calculate the dry density as follows:

$$\rho_d = \left(\frac{\rho_w}{w+100}\right) \times 100 \quad or \quad \rho_d = \frac{\rho_w}{\frac{w}{100}+1}$$

Where:

 $\rho_d = Dry \text{ density, } kg/m^3 (lb/ft^3)$ 

 $\rho_{\rm w}$  = Wet density, kg/m<sup>3</sup> (lb/ft<sup>3</sup>)

w = Moisture content from the FOP's for AASHTO T 255 / T 265, as a percentage

#### Calculate percent compaction as follows:

% Compaction = 
$$\frac{\rho_d}{Agency \ density \ standard} \times 100$$

Where:

 $\rho_d = Dry \text{ density, } kg/m^3 \text{ (lb/ft}^3)$ Agency density standard = Corrected maximum dry density
from the FOP from T 99/T 180 Annex

# Example:

Wet density readings from gauge: 1948 kg/m<sup>3</sup> (121.6 lb/ft<sup>3</sup>) 1977 kg/m<sup>3</sup> (123.4 lb/ft<sup>3</sup>) Avg: 1963 kg/m<sup>3</sup> (122.5 lb/ft<sup>3</sup>)

# Moisture readings from gauge: 14.2% and 15.4% = Avg 14.8%

Moisture content from the FOP's for AASHTO T 255/ T 265: 15.9%

Moisture content is greater than 1 percent different so the gauge moisture cannot be used.

| 49 | T310 | short | 20 |
|----|------|-------|----|
|----|------|-------|----|

E&B/ID 17-5

IN-PLACE DENSITY

#### WAQTC

#### Calculate the dry density as follows:

$$\rho_d = \left(\frac{1963 \, kg/m^3 \, or \, 122.5 \, lb/ft^3}{15.9 + 100}\right) \times 100 \, or \, \rho_d = \frac{1963 \, kg/m^3 \, or \, 122.5 \, lb/ft^3}{\frac{15.9}{100} + 1}$$
$$= 1694 \, kg/m^3 \, or \, 105.7 \, lb/ft^3$$

Given:

$$\rho_w = 1963 \text{ kg/m}^3 \text{ or } 122.5 \text{ lb/ft}^3$$
  
w = 15.9%

Calculate percent compaction as follows:

% Compaction = 
$$\frac{105.7 \ lb/ft^3}{111.3 \ lb/ft^3} \times 100 = 95\%$$

Given:

Agency density standard =  $111.3 \text{ lb/ft}^3$ 

#### Report

- On forms approved by the agency
- Sample ID
- Location of test, elevation of surface, and thickness of layer tested
- Visual description of material tested
- Make, model and serial number of the nuclear moisture-density gauge
- Wet density to the nearest 0.1 lb/ft<sup>3</sup>
- Moisture content as a percent, by mass, of dry soil mass to the nearest 0.1 percent
- Dry density to the nearest 0.1 lb/ft<sup>3</sup>
- Density standard to the nearest 0.1 lb/ft<sup>3</sup>
- Percent compaction the nearest 1 percent
- Name and signature of operator

# PERFORMANCE EXAM CHECKLIST

## IN-PLACE DENSITY AND MOISTURE CONTENT OF SOIL AND SOIL-AGGREGATE BY NUCLEAR METHODS (SHALLOW DEPTH) FOP FOR AASHTO T 310

| Participant Name |     | pant Name Exam Date                                                                                                                                               |         |         |
|------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|
| Rec              | ord | the symbols "P" for passing or "F" for failing on each step of the checklist.                                                                                     |         |         |
| Pro              | oce | dure Element                                                                                                                                                      | Trial 1 | Trial 2 |
| 1.               | Ga  | uge turned on 10 to 20 minutes before use?                                                                                                                        |         |         |
| 2.               | Cal | libration verified?                                                                                                                                               |         |         |
| 3.               |     | ndard count taken and recorded in accordance with nufacturer's instructions?                                                                                      |         |         |
| 4.               | rad | st location selected appropriately 10 m (30 ft.) from other<br>lioactive sources, 3 m (10 ft.) from large objects, 150 mm (6 in.) away<br>m vertical projections? |         |         |
| 5.               | Lo  | ose, disturbed material removed?                                                                                                                                  |         |         |
| 6.               | Fla | t, smooth area prepared?                                                                                                                                          |         |         |
| 7.               |     | rface voids filled with native fines (-No. 4) to 3 mm (1/8 in.) maximum ckness?                                                                                   |         |         |
| 8.               | Но  | le driven 50 mm (2 in.) deeper than source rod depth?                                                                                                             |         |         |
| 9.               | Ga  | uge placed and source rod lowered without disturbing loose material?                                                                                              |         |         |
| 10.              | Me  | ethod A:                                                                                                                                                          |         |         |
|                  | a.  | Gauge firmly seated, and gently pulled back so that the source rod is again<br>the side of the hole toward the scaler / detectors?                                | ist     |         |
|                  | b.  | Two, one-minute reading taken; wet density within $32 \text{ kg/m}^3 (2.0 \text{ lb/ft}^3)$ ?                                                                     |         |         |
| c.               | De  | nsity and moisture data averaged?                                                                                                                                 |         |         |
| 11.              | Me  | ethod B:                                                                                                                                                          |         |         |
|                  | a.  | Gauge firmly seated, and gently pulled back so that the source rod is again<br>the side of the hole toward the scaler / detectors?                                | ist     |         |
|                  | b.  | A minimum of a one-minute reading taken; density and moisture data recorded?                                                                                      |         |         |
|                  | c.  | Gauge turned 90° or 180° (180° in trench)?                                                                                                                        |         |         |

#### OVER

#### T 310

WAQTC

|     | Pr    | ocedure Element                                                                                                                     | Trial 1 | Trial 2 |
|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------|---------|---------|
|     | d.    | Gauge firmly seated, and gently pulled back so that the source rod is agains<br>the side of the hole toward the scaler / detectors? | st      |         |
|     | e.    | A minimum of a one-minute reading taken; density and moisture data recorded?                                                        |         |         |
|     | f.    | Wet densities within 50 kg/m <sup>3</sup> $(3.0 \text{ lb/ft}^3)$ ?                                                                 |         |         |
|     | g.    | Density and moisture data averaged?                                                                                                 |         |         |
| 12. | Re    | presentative sample (4 kg or 9 lb) obtained from test location?                                                                     |         |         |
| 13. | Sai   | nple sealed immediately to prevent moisture loss?                                                                                   |         |         |
| 14. |       | isture content correctly determined using other means than the nuclear sity gauge reading?                                          |         |         |
| 15. | Dr    | Density calculated using proper moisture content?                                                                                   |         |         |
| 16. | Pe    | cent compaction calculated correctly?                                                                                               |         |         |
| Co  | mn    | ents: First attempt: PassFailSecond attempt: Pa                                                                                     | ss]     | Fail    |
|     |       |                                                                                                                                     |         |         |
|     |       |                                                                                                                                     |         |         |
|     |       |                                                                                                                                     |         |         |
| Ev  | 0.000 | ner Signature WAQTC #:                                                                                                              |         |         |

E&B/ID 8-14

# WSDOT Errata to FOP for AASHTO T 312

# *Preparing and Determining the Density of Asphalt Mixture Specimens by Means of the Superpave Gyratory Compactor*

WAQTC FOP for AASHTO T 312 has been adopted by WSDOT with the following changes:

### **Equipment Preparation**

#### Include bullet below:

• Pre-heat molds and plates in the oven set no more than 25° F above the compaction temperature shown on the mix design report.

#### Sample Preparation

### **Plant Produced Asphalt Mixtures**

Replace step 3 with below:

3. Place in the oven until the material is 5° F above the compaction temperature shown on the mix design report.

### **Compaction Procedure**

#### Replace step 3 with below:

3. Remove the pan of Asphalt Mixture from the oven and in one motion invert the pan onto the construction paper, vinyl mat, etc. Quickly remove any material that remains in the pan and include it with the Asphalt Mixture sample to be compacted. Grasp opposing edges of the paper and roll them together to form the Asphalt Mixture into a cylindrical shape. Insert one end of the paper roll into the bottom of the compaction mold and remove the paper as the Asphalt Mixture slides into the mold. This process needs to be accomplished in approximately 60 seconds. Place the mixture into the mold in one lift. Care should be taken to avoid segregation in the mold.

#### PREPARING AND DETERMINING THE DENSITY OF ASPHALT MIXTURE SPECIMENS BY MEANS OF THE SUPERPAVE GYRATORY COMPACTOR FOP FOR AASHTO T 312

#### Scope

This procedure covers preparing specimens, using samples of plant produced asphalt mixtures, for determining the mechanical and volumetric properties of asphalt mixtures in accordance with AASHTO T 312-19.

#### Apparatus

- Superpave Gyratory Compactor (SGC) meeting the requirements of AASHTO T 312
- Molds meeting the requirements of AASHTO T 312
- Chute, mold funnel or both (Optional)
- Scale meeting the requirements of AASHTO M 231 Class G 5
- Oven, thermostatically controlled, capable of maintaining set temperature within ±3°C (±5°F)
- Thermometers accurate to  $\pm 1^{\circ}C$  ( $\pm 2^{\circ}F$ ) between 10 and 232°C (50 450°F)

Note 1: Non-Contact thermometers are not acceptable.

• Miscellaneous pans, spoons, spatulas, hot pads, gloves, paper discs, markers, etc.

#### **Equipment Requirements**

The calibration shall be performed on the SGC per the Manufacturer's instructions. See agency requirements for the calibration frequency.

The mold and base plate dimensions shall be checked every twelve months or 80 hours of operation to determine that they are within the tolerances listed in AASHTO T 312.

#### **Equipment Preparation**

Prepare the equipment in accordance with manufacturer's recommendations. At a minimum preparation includes:

- Warm-up gyratory compactor
- Verify machine settings
  - Internal Angle: 1.16 ±0.02°
  - Ram Pressure: 600 kPa ±18 kPa
  - Number of gyrations

53\_T 312\_short\_20

Asphalt II 21-1

#### ASPHALT II

WAQTC

Note 2: The number of gyrations (Ndes) is obtained from the Job Mix Formula (JMF).

- Lubricate bearing surfaces
- Prepare recording device as required
- Pre-heat molds and plates at the compaction temperature range (minimum of 30 min.) or before reuse reheat (minimum of 5 min.)

*Note 3:* The use of multiple molds will speed up the compaction process.

• Pre-heat chute, mold funnel, spatulas, and other apparatus (not to exceed the maximum compaction temperature)

#### Sample Preparation

#### Laboratory Prepared Asphalt Mixtures

This is a sample produced during the Mix Design process using aggregate and binder that is combined in the laboratory. When designing asphalt mixtures using the gyratory compactor, refer to AASHTO T 312 and AASHTO R 35.

#### **Plant Produced Asphalt Mixtures**

- Determine initial sample size, number of gyrations (N<sub>des</sub>), and compaction temperature range from the Job Mix Formula (JMF).
- Obtain the sample in accordance with the FOP for AASHTO R 97.
- Reduce the sample in accordance with the FOP for AASHTO R 47.
- The sample size should be such that it results in a compacted specimen that is  $115 \pm 5$  mm at the desired number of gyrations.

*Note 4:* Replicate specimens are generally prepared. Refer to agency requirements.

If the material is not in the compaction temperature range:

- 1. Place the appropriate sample mass into a container.
- 2. Spread to a depth of 1 to 2 in. for even heating of mixture.
- 3. Place in the oven until the material is within the compaction temperature range.

*Note 5:* The material properties may be altered when the times of delivery of the test sample and the placement of the material on the roadway are different.

Asphalt II 21-2

Pub. October 2021

WSDOT Materials Manual M 46-01.40 January 2022

## **Compaction Procedure**

Follow the manufacturer's recommended loading procedure. This may require the steps below to be performed in a different order. Steps 1 through 8 must be performed before the sample and mold cools below minimum compaction temperature.

- 1. Remove pre-heated mold and plate(s) from the oven (verify mold and plate(s) has been cleaned if previously used).
- 2. Place the base plate and paper disc in bottom of mold.
- 3. Place the mix into the mold in a single lift (care should be taken to avoid segregation or loss of material).
- 4. Level the mix in the mold.
- 5. Place a paper disc and the heated upper plate (if required) on top of the leveled sample.
- 6. Load the mold into the compactor, check settings.
- 7. Start the compaction process.
  - a. Check the pressure ( $600 \pm 18$  kPa).
  - b. Check the angle  $(1.16 \pm 0.02^{\circ})$ .
- 8. Extrude the specimen from the mold; a brief cooling period may be necessary before fully extruding some specimens to ensure the specimens are not damaged.

Note 6: Clean molds after each use.

9. Upon completion of the compaction process, record the number of gyrations and specimen height.

*Note 7:* If the specimen is not  $115 \pm 5$  mm, follow agency requirements.

- 10. Carefully remove the paper discs.
- 11. Cool the compacted specimen to room temperature.
- 12. Identify the specimen with chalk or other marker.

#### Report

- On forms approved by the agency
- Sample ID
- Number of gyrations
- Specimen height to the nearest 0.1 mm

ASPHALT II

WAQTC

53\_T 312\_short\_20

Asphalt II 21-4

#### PERFORMANCE EXAM CHECKLIST

## PREPARING AND DETERMINING THE DENSITY OF ASPHALT MIXTURE SPECIMENS BY MEANS OF THE SUPERPAVE GYRATORY COMPACTOR FOP FOR AASHTO T 312

| Pa                | rticipant Name Exam Da                                                                                     | Exam Date               |         |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------|-------------------------|---------|--|--|
| Re                | cord the symbols "P" for passing or "F" for failing on each step of the checklist.                         |                         |         |  |  |
| Procedure Element |                                                                                                            |                         | Trial 2 |  |  |
| 1.                | Angle, pressure and number of gyrations set?                                                               |                         |         |  |  |
| 2.                | Bearing surfaces, rotating base surface, and rollers lubricated?                                           |                         |         |  |  |
| 3.                | Representative sample obtained according to the FOP for AASHTO R 97?                                       |                         |         |  |  |
| 4.                | Sample reduced according to FOP AASHTO R 47?                                                               |                         |         |  |  |
| 5.                | Sample placed in a container and spread to 1 or 2 inches thick for even heating?                           |                         |         |  |  |
| 6.                | Asphalt mixture heated to compaction temperature range?                                                    |                         |         |  |  |
| 7.                | Mold, base plate, and upper plate heated to compaction temperature range?                                  |                         |         |  |  |
| 8.                | Mold, base plate, and upper plate (if required) removed from oven and paper disk placed on bottom of mold? |                         |         |  |  |
| 9.                | Mix placed into mold in one lift without segregation?                                                      |                         |         |  |  |
| 10.               | Paper disk placed on top of the asphalt mixture?                                                           |                         |         |  |  |
| 11.               | Mold placed into compactor and upper plate clamped into place?                                             |                         |         |  |  |
| 12.               | Pressure applied at 600 kPa ±18 kPa?                                                                       |                         |         |  |  |
| 13.               | Specified number of gyrations applied?                                                                     |                         |         |  |  |
| 14.               | Proper angle confirmed from display?                                                                       |                         |         |  |  |
| 15.               | Compacted specimen removed from mold, paper disc(s) removed, and allowed to cool to room temperature?      |                         |         |  |  |
| 16.               | Asphalt mixture sample measured to a height of $115 \pm 5$ mm at required gyrations?                       |                         |         |  |  |
| Co                | mments: First attempt: PassFailSecond attempt:                                                             | Pass                    | Fail    |  |  |
|                   |                                                                                                            |                         |         |  |  |
|                   |                                                                                                            | #:<br>Pub. October 2021 |         |  |  |

ASPHALT II

WAQTC

41\_T312\_pr\_20

Asphalt II 11-10

# WSDOT Errata to AASHTO T 324

# Hamburg Wheel-Track Testing of Compacted Asphalt Mixtures

AASHTO T 324 has been adopted by WSDOT with the following changes:

### 7. Determining Air Void Content

7.3. Determine the air void content of the specimens in accordance with T 269. The recommended target air void content is 7.0 ± 1.0 percent for laboratory-compacted SGC cylindrical specimens and 7.0 ± 1.0 percent for laboratory-compacted slab specimens. Field specimens may be tested at the air void content at which they are obtained.

#### 8. Procedure

8.6.1. Select a test temperature of 50° C.

## Tester Qualification Practical Exam Checklist

## Hamburg Wheel-Track Testing of Compacted Asphalt Mixtures AASHTO T 324

| Partio | cipant Name                                                                                                                                                        | Exam Da        | ite |      |     |    |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|------|-----|----|
| Proce  | edure Element                                                                                                                                                      |                |     |      | Yes | No |
| 1.     | The tester has a copy of the current procedure on h                                                                                                                | and?           |     |      |     |    |
| 2.     | All equipment is functioning according to the test procedure, and if required, has the current calibration/verification tags present?                              |                |     |      |     |    |
| 3.     | Specimen height is $62 \pm 1.0$ mm (2.44 $\pm 0.04$ in.) or 38.1 mm (1.5 inch) minimum for cores?                                                                  |                |     |      |     |    |
| 4.     | Specimen meets air void tolerance of 7.0 + 1.0 %?                                                                                                                  |                |     |      |     |    |
| 5.     | Specimens placed in molds and loaded into trays with a maximum gap of 7.5 mm between molds?                                                                        |                |     |      |     |    |
| 6.     | Tray mounted in machine and securely fastened?                                                                                                                     |                |     |      |     |    |
| 7.     | Sample data and testing parameters entered into computer? (e.g., sample name, agg source, wheel speed, maximum rut depth, number of passes, and water temperature) |                |     |      |     |    |
| 8.     | Wheels gently lowered and samples allowed to soak at testing temperature for 45 minutes?                                                                           |                |     |      |     |    |
| 9.     | Wheel tracking device shut off when test parameter                                                                                                                 | rs are reached | d?  |      |     |    |
| 10.    | Test data obtained for charting and analysis?                                                                                                                      |                |     |      |     |    |
| First  | Attempt: Pass Fail Second                                                                                                                                          | Attempt: Pas   | 6S  | Fail |     |    |

Signature of Examiner

Comments:

## MOISTURE CONTENT OF ASPHALT MIXTURES BY OVEN METHOD FOP FOR AASHTO T 329

#### Scope

This procedure covers the determination of moisture content of asphalt mixtures in accordance with AASHTO T 329-15.

#### **Overview**

Moisture content is determined by comparing the wet mass of a sample and the mass of the sample after drying to constant mass. The term constant mass is used to define when a sample is dry.

*Constant mass* – the state at which a mass does not change more than a given percent, after additional drying for a defined time interval, at a required temperature.

#### **Apparatus**

- Balance or scale: 2 kg capacity, readable to 0.1 g and conforming to AASHTO M 231.
- Forced draft, ventilated, or convection oven: Capable of maintaining the temperature surrounding the sample at 163 ±14°C (325 ±25°F).
- Sample Container: Clean, dry, not affected by heat and of sufficient size to contain a test sample without danger of spilling.
- Thermometer or other suitable device with a temperature range of 10-260°C (50-500°F) and readable to the nearest 2°C (4°F).

#### Sample

The test sample shall be obtained in accordance with the FOP for AASHTO R 97 and reduced in accordance with the FOP for AASHTO R 47. The size of the test sample shall be a minimum of 1000 g.

#### Procedure

- 1. Preheat the oven to the Job Mix Formula (JMF) mixing temperature range. If the mixing temperature is not supplied, a temperature of  $163 \pm 14^{\circ}$ C ( $325 \pm 25^{\circ}$ F) is to be used.
- 2. Determine and record the mass of the sample container, including release media, to the nearest 0.1 g.

*Note 1:* When using paper or other absorptive material to line the sample container ensure it is dry before determining initial mass of sample container.

- 3. Place the test sample in the sample container.
- 4. Determine and record the temperature of the test sample.
- 5. Determine and record the total mass of the sample container and test sample to the nearest 0.1 g.

#### ASPHALT

WAQTC

- 6. Calculate the initial, moist mass (M<sub>i</sub>) of the test sample by subtracting the mass of the sample container as determined in Step 2 from the total mass of the sample container and the test sample as determined in Step 5.
- 7. The test sample shall be initially dried for  $90 \pm 5$  minutes, and its mass determined. Then it shall be dried at  $30 \pm 5$  minute intervals until further drying does not alter the mass by more than 0.05 percent.
- 8. Cool the sample container and test sample to  $\pm 9^{\circ}C (\pm 15^{\circ}F)$  of the temperature determined in Step 4.
- 9. Determine and record the total mass of the sample container and test sample to the nearest 0.1 g.
- 10. Calculate the final, dry mass (M<sub>f</sub>) of the test sample by subtracting the mass of the sample container as determined in Step 2 from the total mass of the sample container and the test sample as determined in Step 9.
  - *Note 2:* Moisture content and the number of samples in the oven will affect the rate of drying at any given time. Placing wet samples in the oven with nearly dry samples could affect the drying process.

#### Calculations

#### **Constant Mass:**

Calculate constant mass using the following formula:

% Change = 
$$\frac{M_p - M_n}{M_p} \times 100$$

Where:

 $M_p$  = previous mass measurement  $M_n$  = new mass measurement

WAQTC

#### **Example:**

Mass of container:232.6 gMass of container and sample after first drying cycle:1361.8 gMass,  $M_p$ , of possibly dry sample:1361.8 g - 232.6 g = 1129.2 gMass of container and possibly dry sample after second drying cycle:1360.4 gMass,  $M_n$ , of possibly dry sample:1360.4 g - 232.6 g = 1127.8 g

% Change = 
$$\frac{1129.2 \ g - 1127.8 \ g}{1129.2 \ g} \times 100 = 0.12\%$$

0.12 percent is not less than 0.05 percent, so continue drying the sample.

 $\begin{array}{ll} \mbox{Mass of container and possibly dry sample after third drying cycle:} & 1359.9 \ g \\ \mbox{Mass, } M_n, \mbox{ of dry sample:} & 1359.9 \ g - 232.6 \ g = 1127.3 \ g \\ \end{array}$ 

% Change = 
$$\frac{1127.8 g - 1127.3 g}{1127.8 g} \times 100 = 0.04\%$$

0.04 percent is less than 0.05 percent, so constant mass has been reached.

#### **Moisture Content:**

Calculate the moisture content, as a percent, using the following formula.

Moisture Content = 
$$\frac{M_i - M_f}{M_f} \times 100$$

Where:

 $M_i$  = initial, moist mass  $M_f$  = final, dry mass

47\_T329\_short\_20

Asphalt 15-3

#### ASPHALT

Example:

 $\begin{array}{rll} M_i & = & 1134.9 \ g \\ M_f & = & 1127.3 \ g \end{array}$ 

*Moisture Content* = 
$$\frac{1134.9 \ g - 1127.3 \ g}{1127.3 \ g} \times 100 = 0.674$$
, say 0.67%

## Report

- On forms approved by the agency
- Sample ID
- Moisture content to the nearest 0.01 percent

47\_T329\_short\_20

Asphalt 15-4

## WAQTC

## PERFORMANCE EXAM CHECKLIST

## MOISTURE CONTENT OF ASPHALT MIXTURES BY OVEN METHOD FOP FOR AASHTO T 329

| Pa | rticipant Name Exam I                                                                                                   | Date            |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|
| Re | Record the symbols "P" for passing or "F" for failing on each step of the checklist.                                    |                 |  |  |  |
| Pr | ocedure Element                                                                                                         | Trial 1 Trial 2 |  |  |  |
| 1. | Mass of clean dry container including release media determined to 0.1 g?                                                |                 |  |  |  |
| 2. | Representative sample obtained; 1000 g minimum?                                                                         |                 |  |  |  |
| 3. | Initial temperature taken and recorded?                                                                                 |                 |  |  |  |
| 4. | Mass of sample determined to 0.1 g?                                                                                     |                 |  |  |  |
| 5. | Sample placed in drying oven for $90 \pm 5$ minutes?                                                                    |                 |  |  |  |
| 6. | Sample dried at a temperature not to exceed the JMF mixing temp?                                                        | ,               |  |  |  |
| 7. | Constant mass checked at $30 \pm 5$ minute intervals and reached?                                                       |                 |  |  |  |
| 8. | Sample and container cooled to $\pm 9^{\circ}$ C (15°F) of the initial temperate before final mass determined to 0.1 g? | ure             |  |  |  |
| 9. | Calculation of moisture content performed correctly to 0.01 percent                                                     | t?              |  |  |  |

Moisture Content = 
$$\frac{M_i - M_f}{M_f} \times 100$$

| Comments:  | First attempt: | Pass | Fail | Second attempt: Pass | Fail |
|------------|----------------|------|------|----------------------|------|
|            |                |      |      |                      |      |
|            |                |      |      |                      |      |
|            |                |      |      |                      |      |
|            |                |      |      |                      |      |
|            |                |      |      |                      |      |
| Examiner S | Signature      |      |      | WAQTC #:             |      |
|            |                |      |      |                      |      |

ASPHALT

WAQTC

24\_T329\_pr\_09

Asphalt 5-10

#### BULK SPECIFIC GRAVITY (Gmb) AND DENSITY OF COMPACTED ASPHALT MIXTURES USING AUTOMATIC VACUUM SEALING METHOD FOP FOR AASHTO T 331

#### Scope

This method covers the determination of bulk specific gravity ( $G_{mb}$ ) of compacted asphalt mixture specimens in accordance with AASHTO T 331-21.

#### Overview

This method is used when specimens have open or interconnecting voids or absorb more than 2.0 percent of water by volume, or both, according to the FOP for AASHTO T 166.

Bulk specific gravity ( $G_{mb}$ ) determined by this method may be lower, and air voids higher, than the results determined according to the FOP for AASHTO T 166. The differences may be more pronounced for coarse and absorptive mixtures. This procedure should be followed during laboratory mix designing if it will be used for control or assurance testing.

## Test Specimens

Test specimens may be either laboratory-molded or sampled from asphalt mixture pavement. For specimens it is recommended that the diameter be equal to four times the maximum size of the aggregate and the thickness be at least one and one half times the maximum size of the aggregate.

## Terminology

*Constant Mass:* The state at which a mass does not change more than a given percent, after additional drying for a defined time interval, at a required temperature.

## Apparatus

- Bag cutter: knife or scissors
- Balance or scale: 5 kg capacity, readable to 0.1 g, and fitted with a suitable suspension apparatus and holder to permit weighing the specimen while suspended in water, conforming to AASHTO M 231.
- Suspension apparatus: Wire of the smallest practical size and constructed to permit the container to be fully immersed.
- Water bath: For immersing the specimen in water while suspended under the balance or scale and equipped with an overflow outlet for maintaining a constant water level.
- Oven: Capable of maintaining a temperature of  $110 \pm 5^{\circ}$ C ( $230 \pm 9^{\circ}$ F) for drying the specimens to a constant mass.
- Thermometer: Having a range of 19 to 27°C (66 to 80°F), graduated in 0.1°C (0.2°F) subdivisions.

FOP Library -1

#### FOP AASHTO T 331 (21)

- Plastic bags: puncture resistant impermeable plastic bags that will not stick to the specimen and capable of withstanding temperatures up to 70°C (158°F). Between 0.100 mm (0.004 in.) and 0.152 mm (0.006 in.) thick. The bag correction factor (apparent specific gravity) is supplied by the manufacturer.
  - Small bag: less than 35 g with an opening between 235 mm (9.25 in.) and 260 mm (10.25 in.)
  - Large bag: 35 g or more with an opening between 375 mm (14.75 in.) and 394 mm (15.5 in.)

*Note 1:* The bag correction factor is usually located in the operator's manual. See the manufacturer's recommendations to ensure proper handling of bags.

- Specimen sliding plates: removable level and smooth-sided planar filler plates shall be inserted into the chamber to keep the samples of various heights level with the seal bar while being sealed.
- Specimen support plate: a plate with a cushioning membrane on top large enough to fully support the specimen and can easily slide on top of the smooth-sided plates.
- Vacuum chamber and sealing device: meeting the requirements of AASHTO T 331
- Vacuum gauge: meeting the requirements of AASHTO T 331

#### Procedure

Recently molded laboratory samples that have not been exposed to moisture do not need drying.

- 1. Dry the specimen to constant mass, if required.
  - a. Oven method
    - i. Initially dry overnight at  $52 \pm 3^{\circ}$ C ( $125 \pm 5^{\circ}$ F).
    - ii. Determine and record the mass of the specimen. Designate as Mp.
    - iii. Return the specimen to the oven for at least 2 hours.
    - iv. Determine and record the mass of the specimen. Designate as M<sub>n</sub>.
    - v. Determine percent change by subtracting the new mass determination, M<sub>n</sub>, from the previous mass determination, M<sub>p</sub>, divide by the previous mass determination, M<sub>p</sub>, and multiply by 100.
    - vi. Continue drying until there is no more than 0.05 percent change in specimen mass after 2-hour drying intervals (constant mass).
    - vii. Constant mass has been achieved; sample is defined as dry.
  - b. Vacuum dry method according to the FOP for AASHTO R 79.
- 2. Cool the specimen in air to  $25 \pm 5^{\circ}$ C (77  $\pm 9^{\circ}$ F), and determine and record the dry mass to the nearest 0.1 g. Designate this mass as A.

*Note 1*: 3000 to 6000 g laboratory compacted specimens may be considered room temperature after 2 hr. under a fan. Cooling time may be reduced for smaller specimens.

T331\_short\_21\_errata

FOP Library -2

#### FOP LIBRARY

T 331

- 3. Fill the water bath to overflow level with water at  $25 \pm 1^{\circ}$ C (77  $\pm 1.8^{\circ}$ F) and allow the water to stabilize
- 4. Seal the specimen.
  - a. Use a large bag for 150 mm (6 in.) in by 50 mm (2 in.) or greater specimens. Use a small bag for smaller specimens.
  - b. Set the heat-sealing bar temperature according to manufacturer's directions.
  - c. Inspect the bag for holes and irregularities.
  - d. Determine and record the mass of the bag. Designate as B.
  - e. Adjust filler plates in the vacuum chamber, adding or removing plates as needed.
  - f. Place specimen support plate on top of filler plates.
  - g. Place the bag on top of the specimen support plate in the vacuum chamber.
  - h. Insert the specimen into the bag with the smoothest plane of the specimen on the bottom.
- *Note 2:* Inserting the specimen into the bag may be done inside the chamber while holding the bag open with one hand over the sliding plate and gently inserting the specimen with the other hand. There should be about 25 mm (1 in.) of slack between the presealed bag end and the specimen.
  - i. Grab the unsealed end of the bag on each side.
  - j. Gently pull and center the bag over the seal bar, overlapping at least 25 mm (1 in.). Ensure that there are no wrinkles in the bag along the seal bar before closing the lid.
  - k. Close the lid and engage the lid-retaining latch.
- *Note 3:* The vacuum pump light will illuminate "red," and the vacuum gauge on the exterior of the chamber will become active, or a digital reading will show the vacuum state. It is normal for the bag to expand or "puff up" during this process.
  - 1. Once sealed, the 'de-vac' valve will open, and air will enter the chamber, causing atmospheric pressure to collapse the bag around the specimen.
  - m. Disengage the lid-retaining latch, and carefully remove the sealed specimen from the chamber. Gently pull on the bag where it appears loose. Loose areas indicate a poor seal and the process must then be restarted at Step 4 with a new bag and a new initial mass.
- 5. Zero or tare the balance with the immersion apparatus attached, ensuring that the device is not touching the sides or the bottom of the water bath.
- 6. Fully submerge the specimen and bag shaking to remove the air bubbles. Ensure no air is trapped under the bag or in the bag creases. Place the specimen on its side in the suspension apparatus.
- 7. Allow water level and scale to stabilize.
- 8. Determine and record the submerged weight to the nearest 0.1 g. Designate this submerged weight as E.

*Note 4:* Complete Steps 4 through 7 in 1 min. or less to reduce potential for bag leaks.

FOP LIBRARY

WAQTC

- 9. Cut the bag open.
- 10. Remove the specimen from the bag.
- 11. Determine the mass of the specimen. Designate as C.
- 12. Compare this mass, C, with initial dry mass determined in Step 2, A.

If more than 0.08 percent is lost or more than 0.04 percent is gained, return to Step 1.

13. Calculate  $G_{mb}$  and record to three decimal places.

## Calculations

Calculate constant mass using the following formula:

$$\% Change = \frac{M_p - M_n}{M_p} \times 100$$

Where:

M<sub>p</sub> = previous mass measurement, g M<sub>n</sub> = new mass measurement, g

Calculate the bulk specific gravity  $(G_{mb})$  using the following formula:

$$G_{mb} = \frac{A}{C + B - E - \left(\frac{B}{F}\right)}$$

Where:

- $G_{mb}$  = bulk specific gravity
- A = mass of dry specimen in air, g
- B = mass of the bag in air, g
- C = final mass of the specimen after removal from the sealed bag, g
- E = mass of the sealed specimen underwater, g
- F = bag correction factor (apparent specific gravity), provided by the bag manufacturer

#### FOP LIBRARY

## Example

$$G_{mb} = \frac{4833.6 g}{4833.6 g + 50.2 g - 2860.4 g - \left(\frac{50.2 g}{0.756}\right)} = 2.470$$

Given:

| А | = | 4833.6 g |
|---|---|----------|
| В | = | 50.2 g   |
| С | = | 4833.6 g |
| Е | = | 2860.4 g |
| F | = | 0.756    |

## Report

- Results on forms approved by the agency
- Sample ID
- G<sub>mb</sub> to the nearest 0.001

FOP LIBRARY

WAQTC

FOP AASHTO T 331 (21)

T331\_short\_21\_errata

FOP Library -6

Pub. October 2021

Page 6 of 8

## Performance Exam Checklist

# Bulk Specific Gravity (G<sub>mb</sub>) and Density of Compacted Asphalt Mixtures Using Automatic Vacuum Sealing Method

## FOP for AASHTO T 331

Participant Name \_\_\_\_\_

Exam Date \_\_\_\_\_

Record the symbols "P" for passing or "F" for failing on each step of the checklist.

| Proc | edure Element                                                                                                                                                 | Trial 1 | Trial 2 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|
| 1.   | The tester has a copy of the current procedure on hand?                                                                                                       |         |         |
| 2.   | All equipment is functioning according to the test procedure, and if required has the current calibration/standardization/check and maintenance tags present? |         |         |
| 3.   | Water bath of suitable size to entirely submerge and suspend the specimen with an adequate holder?                                                            |         |         |
| 4.   | Water bath equipped with an overflow outlet?                                                                                                                  |         |         |
| 5.   | Plastic bag meets requirements?                                                                                                                               |         |         |
| 6.   | Specimen dried to constant mass?                                                                                                                              |         |         |
| 7.   | Specimen cooled to $77 \pm 9^{\circ}$ F (25 ± 5°C) and dry mass, A, determined?                                                                               |         |         |
| 8.   | Water bath filled to overflow and allowed to stabilized at $77 \pm 1.8^{\circ}F (25 \pm 1^{\circ}C)$ ?                                                        |         |         |
| 9.   | Appropriate size bag selected and mass, B, determined?                                                                                                        |         |         |
| 10.  | Filler plates adjusted as needed?                                                                                                                             |         |         |
| 11.  | Specimen inserted into bag with smoothest plane on bottom?                                                                                                    |         |         |
| 12.  | Bag centered and overlapping seal bar at least 1 in. (25 mm) with no wrinkles?                                                                                |         |         |
| 13.  | Lid closed and latched to engage operation?                                                                                                                   |         |         |
| 14.  | Specimen carefully removed and inspected for poor seal?                                                                                                       |         |         |
| 15.  | If poor seal process restarted at Step 4?                                                                                                                     |         |         |
| 16.  | Sealed specimen fully submerged, ensuring no air is trapped and bag is not touching water bath sides?                                                         |         |         |
| 17.  | Once water level and balance stabilize, submerged weight, E, determined?                                                                                      |         |         |
| 18.  | Specimen removed from bag and mass, C, determined?                                                                                                            |         |         |
| 19.  | If mass, C, has more than 0.08 percent lost or more than 0.04 percent gained than mass, A, process restarted at Step 1?                                       |         |         |
| 20.  | All calculations performed correctly?                                                                                                                         |         |         |

| T 331                 |      |                      |         |
|-----------------------|------|----------------------|---------|
|                       |      |                      |         |
| First Attempt: Pass   | Fail | Second Attempt: Pass | Fail    |
| Signature of Examiner |      |                      | WAQTC # |
| Comments:             |      |                      |         |

## WSDOT Errata to FOP for AASHTO T 335

## Determining the Percent Fracture in Coarse Aggregate

WAQTC FOP for AASHTO T 335 has been adopted by WSDOT with the following changes:

## Sampling and Sample Preparation

4. Method 2 - Individual Sieve Fracture Determination - Method not recognized by WSDOT.

## DETERMINING THE PERCENTAGE OF FRACTURE IN COARSE AGGREGATE FOP FOR AASHTO T 335

#### Scope

This procedure covers the determination of the percentage, by mass, of a coarse aggregate (CA) sample that consists of fractured particles meeting specified requirements in accordance with AASHTO T 335-09.

In this FOP, a sample of aggregate is screened on the sieve separating CA and fine aggregate (FA). This sieve will be identified in the agency's specifications but might be the 4.75 mm (No. 4) sieve. CA particles are visually evaluated to determine conformance to the specified fracture. The percentage of conforming particles, by mass, is calculated for comparison to the specifications.

#### Apparatus

- Balance or scale: Capacity sufficient for the principal sample mass, accurate to 0.1 percent of the sample mass or readable to 0.1 g and meeting the requirements of AASHTO M 231.
- Sieves: Meeting requirements of the FOP for AASHTO T 27/T 11.
- Splitter: Meeting the requirements of FOP for AASHTO R 76.

#### Terminology

- 1. Fractured Face: An angular, rough, or broken surface of an aggregate particle created by crushing or by other means. A face is considered a "fractured face" whenever one-half or more of the projected area, when viewed normal to that face, is fractured with sharp and well-defined edges. This excludes small nicks.
- 2. Fractured particle: A particle of aggregate having at least the minimum number of fractured faces specified. (This is usually one or two.)

#### Sampling and Sample Preparation

- 1. Sample and reduce the aggregate in accordance with the FOPs for AASHTO R 90 and R 76.
- 2. When the specifications list only a total fracture percentage, the sample shall be prepared in accordance with Method 1. When the specifications require that the fracture be counted and reported on each sieve, the sample shall be prepared in accordance with Method 2.
- 3. Method 1 Combined Fracture Determination
  - a. Dry the sample sufficiently to obtain a clean separation of FA and CA material in the sieving operation.

Aggregate 13-1

WAQTC

- b. Sieve the sample in accordance with the FOP for AASHTO T 27/ T 11 over the 4.75 mm (No. 4) sieve, or the appropriate sieve listed in the agency's specifications for this material.
- *Note 1:* Where necessary, wash the sample over the sieve designated for the determination of fractured particles to remove any remaining fine material, and dry to a constant mass in accordance with the FOP for AASHTO T 255.
  - c. Reduce the sample using Method A Mechanical Splitter, in accordance with the FOP for AASHTO R 76, to the appropriate test size. This test size should be slightly larger than shown in Table 1, to account for loss of fines through washing if necessary.

| TABLE 1 |                    |                                                          |         |
|---------|--------------------|----------------------------------------------------------|---------|
|         |                    | ple Size                                                 |         |
| Me      | thod 1 (Comb       | ined Sieve Fra                                           | acture) |
| 110     | minal<br>1um Size* | Minimum Cumulative<br>Sample Mass<br>Retained on 4.75 mm |         |
| mr      | n (in.)            | (No. 4) Sieve                                            |         |
|         |                    | g                                                        | (lb)    |
| 37.5    | (1 1/2)            | 2500                                                     | (6)     |
| 25.0    | (1)                | 1500                                                     | (3.5    |
| 19.0    | (3/4)              | 1000                                                     | (2.5)   |
| 12.5    | (1/2)              | 700                                                      | (1.5)   |
| 9.5     | (3/8)              | 400                                                      | (0.9)   |
| 4.75    | (No. 4)            | 200                                                      | (0.4)   |

\* One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

- 4. Method 2 Individual Sieve Fracture Determination
  - a. Dry the sample sufficiently to obtain a clean separation of FA and CA material in the sieving operation. A washed sample from the gradation determination (the FOP for T 27/T 11) may be used.
  - b. If not, sieve the sample in accordance with the FOP for AASHTO T 27 over the sieves listed in the specifications for this material.
  - *Note 2:* If overload (buffer) sieves are used the material from that sieve must be added to the next specification sieve.
  - c. The size of test sample for each sieve shall meet the minimum size shown in Table 2. Utilize the total retained sieve mass or select a representative portion from each sieve mass by splitting or quartering in accordance with the FOP for AASHTO R 76.
  - *Note 3:* Where necessary, wash the sample over the sieves designated for the determination of fractured particles to remove any remaining fine material, and dry to a constant mass in accordance with the FOP for AASHTO T 255.

41\_T335\_short\_21\_errata

Aggregate 13-2

Pub. October 2021

TADIE 3

FOP AASHTO T 335 (21)

| TABLE 2Sample SizeMethod 2 (Individual Sieve Fracture) |                    |         |                 |  |
|--------------------------------------------------------|--------------------|---------|-----------------|--|
| Sie                                                    | ve Size<br>n (in.) | Minimur | n Sample<br>ass |  |
| 31.5                                                   | (1 1/4)            | 1500    | (3.5)           |  |
| 25.0                                                   | (1)                | 1000    | (2.2)           |  |
| 19.0                                                   | (3/4)              | 700     | (1.5)           |  |
| 16.0                                                   | (5/8)              | 500     | (1.0)           |  |
| 12.5                                                   | (1/2)              | 300     | (0.7)           |  |
| 9.5                                                    | (3/8)              | 200     | (0.5)           |  |
| 6.3                                                    | (1/4)              | 100     | (0.2)           |  |
| 4.75                                                   | (No. 4)            | 100     | (0.2)           |  |
| 2.36                                                   | (No. 8)            | 25      | (0.1)           |  |
| 2.00                                                   | (No. 10)           | 25      | (0.1)           |  |

*Note 4:* If fracture is determined on a sample obtained for gradation, use the mass retained on the individual sieves, even if it is less than the minimum listed in Table 2. If less than 5 percent of the total mass is retained on a single specification sieve, include that material on the next smaller specification sieve. If a smaller specification sieve does not exist, this material shall not be included in the fracture determination.

#### Procedure

- 1. After cooling, spread the dried sample on a clean, flat surface.
- 2. Examine each particle face and determine if the particle meets the fracture criteria.
- 3. Separate the sample into three categories:
  - Fractured particles meeting the criteria
  - Particles not meeting the criteria
  - Questionable or borderline particles
- 4. Determine the dry mass of particles in each category to the nearest 0.1 g.
- 5. Calculate the percent questionable particles to the nearest 1 percent.
- 6. Re-sort the questionable particles when more than 15 percent is present. Continue sorting until there is no more than 15 percent in the questionable category.
- 7. Calculate the percent fractured particles meeting criteria to nearest 0.1 percent. Report to 1 percent.

Aggregate 13-3

WAQTC

## Calculation

Calculate the percent questionable particles to the nearest 1 percent using the following formula:

$$\%Q = \frac{Q}{F + Q + N} \times 100$$

Where:

%Q =Percent of questionable particlesF =Mass of fractured particlesQ =Mass of questionable or borderline particlesN =Mass of unfractured particles

#### **Example:**

 $\%Q = \frac{97.6 \ g}{632.6 \ g + 97.6 \ g + 352.6 \ g} \times 100 = 9\%$ 

Given:

| F | = | 632.6 g |
|---|---|---------|
| Q | = | 97.6 g  |
| N | = | 352.6 g |

Calculate the percent fractured particles to the nearest 0.1 percent using the following formula:

$$P = \frac{\frac{Q}{2} + F}{F + Q + N} \times 100$$

Where:

P = Percent of fractured particles

F = Mass of fractured particles

Q = Mass of questionable particles

N = Mass of unfractured particles

41 T335 short 21 errata

Aggregate 13-4

Pub. October 2021

#### WAQTC

FOP AASHTO T 335 (21)

## Example:

$$P = \frac{\frac{97.6 g}{2} + 632.6 g}{632.6 g + 97.6 g + 352.6 g} \times 100 = 62.9\%$$
 Report 63%

Given:

| F | = | 632.6 g |
|---|---|---------|
| Q | = | 97.6 g  |
| N | = | 352.6 g |

## Report

- On forms approved by the agency
- Sample ID
- Fractured particles to the nearest 1 percent.

Aggregate 13-5

41\_T335\_short\_21\_errata

Aggregate 13-6

Pub. October 2021

## PERFORMANCE EXAM CHECKLIST

# DETERMINING THE PERCENTAGE OF FRACTURE IN COARSE AGGREGATE FOP FOR AASHTO T 335

| Participant Name |                                                     |                                   | Exam Date                 |  |  |  |
|------------------|-----------------------------------------------------|-----------------------------------|---------------------------|--|--|--|
| Re               | cord the symbols "P" for p                          | passing or "F" for failing on eac | ch step of the checklist. |  |  |  |
| Pr               | ocedure Element                                     |                                   | Trial 1 Trial 2           |  |  |  |
| 1.               | Sample properly sieved t                            | hrough specified sieve(s)?        |                           |  |  |  |
| 2.               | Sample reduced to correct                           | et size?                          |                           |  |  |  |
| 3.               | Sample dried and cooled                             | , if necessary?                   |                           |  |  |  |
| 4.               | Particles separated into f questionable categories? | ractured, unfractured, and        |                           |  |  |  |
| 5.               | Dry mass of each catego                             | ry determined to nearest 0.1 g    | ?                         |  |  |  |
| 6.               | Questionable category re falls in that category?    | sorted if more than 15 percen     | t of total mass           |  |  |  |
| 7.               | Fracture calculation perf                           | ormed correctly?                  |                           |  |  |  |
|                  |                                                     |                                   |                           |  |  |  |
|                  |                                                     |                                   |                           |  |  |  |
|                  |                                                     |                                   |                           |  |  |  |
|                  |                                                     |                                   |                           |  |  |  |
|                  | Examiner Signature                                  |                                   | WAQTC #:                  |  |  |  |
| 32_              | _T335_pr_14                                         | Aggregate 7-9                     | Pub. October 2021         |  |  |  |

WAQTC

32\_T335\_pr\_14

Aggregate 7-10

Pub. October 2021

## WSDOT Errata to FOP for AASHTO T 355

## In-Place Density of Asphalt Mixtures by Nuclear Methods

WAQTC FOP for AASHTO T 355 has been adopted by WSDOT with the following changes:

## Material

Filler material: Not used by WSDOT, unless SMA is being placed, then use filler material as described.

#### **Test Site Location**

Replace step 1 with below:

1. WSDOT requires test location selected per WSDOT Test Method 716.

#### Procedure

Method A - Average of two one-minute tests - Not recognized by WSDOT use Method B:

## **APPENDIX - CORRELATION WITH CORES**

#### **Correlation with Cores**

Replace step 2 with below:

1. Obtain a pavement core from each of the test sites according to WSDOT SOP 734. The core should be taken from the center of the nuclear gauge footprint.

# IN-PLACE DENSITY OF ASPHALT MIXTURES BY NUCLEAR METHODS FOP FOR AASHTO T 355

#### Scope

This test method describes a procedure for determining the density of asphalt mixtures by means of a nuclear gauge using the backscatter method in accordance with AASHTO T 355-18. Correlation with densities determined under the FOP for AASHTO T 166 is required by some agencies.

#### Apparatus

- Nuclear density gauge with the factory-matched standard reference block.
- Transport case for properly shipping and housing the gauge and tools.
- Instruction manual for the specific make and model of gauge.
- Radioactive materials information and calibration packet containing:
  - Daily standard count log
  - Factory and laboratory calibration data sheet
  - Leak test certificate
  - Shippers' declaration for dangerous goods
  - Procedure memo for storing, transporting, and handling nuclear testing equipment
  - Other radioactive materials documentation as required by local regulatory requirements

#### Material

• Filler material: Fine-graded sand from the source used to produce the asphalt pavement or other agency approved materials.

## **Radiation Safety**

This method does not purport to address all of the safety problems associated with its use. This test method involves potentially hazardous materials. The gauge utilizes radioactive materials that may be hazardous to the health of the user unless proper precautions are taken. Users of this gauge must become familiar with the applicable safety procedures and governmental regulations. All operators will be trained in radiation safety before operating nuclear density gauges. Some agencies require the use of personal monitoring devices such as a thermoluminescent dosimeter or film badge. Effective instructions, together with routine safety procedures such as source leak tests, recording and evaluation of personal monitoring device data, etc., are a recommended part of the operation and storage of this gauge.

#### IN-PLACE DENSITY

WAQTC

## Calibration

Calibrate the nuclear gauge as required by the agency. This calibration may be performed by the agency using the manufacturer's recommended procedures or by other facilities approved by the agency. Verify or re-establish calibration curves, tables, or equivalent coefficients every 12 months.

## Standardization

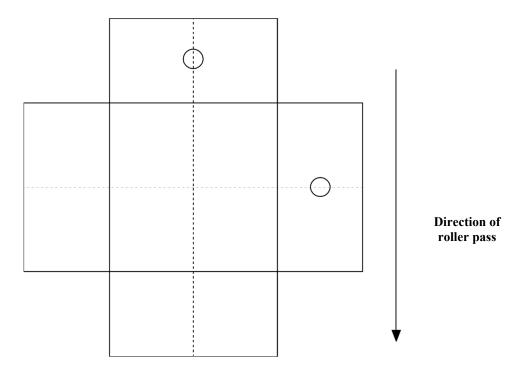
- 1. Turn the gauge on and allow it to stabilize (approximately 10 to 20 minutes) before standardization. Leave the power on during the day's testing.
- 2. Standardize the nuclear gauge at the construction site at the start of each day's work and as often as deemed necessary by the operator or agency. Daily variations in standard count shall not exceed the daily variations established by the manufacturer of the gauge. If the daily variations are exceeded after repeating the standardization procedure, the gauge should be repaired, recalibrated, or both.
- 3. Record the standard count for both density and moisture in the daily standard count log. The exact procedure for standard count is listed in the manufacturer's Operator's Manual.

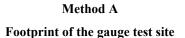
Note 1: New standard counts may be necessary more than once a day. See agency requirements.

## **Test Site Location**

- 1. Select a test location(s) randomly and in accordance with agency requirements. Test sites should be relatively smooth and flat and meet the following conditions:
  - a. At least 10 m (30 ft.) away from other sources of radioactivity.
  - b. At least 3 m (10 ft.) away from large objects.
  - c. If the gauge will be closer than 600 mm (24 in.) to any vertical mass, or less than 300 mm (12 in.) from a vertical pavement edge, use the gauge manufacturer's correction procedure.

## Procedure


- 1. Maintain maximum contact between the base of the gauge and the surface of the material under test.
- 2. Use filler material to fill surface voids.
- 3. Spread a small amount of filler material over the test site surface and distribute it evenly. Strike off the surface with a straightedge (such as a lathe or flat-bar steel) to remove excess material.
- 4. If using thin-layer mode, enter the anticipated overlay thickness into the gauge.


*Note 2:* If core correlation is required, entered thickness, anticipated thickness, and nominal core thickness may be required to match.

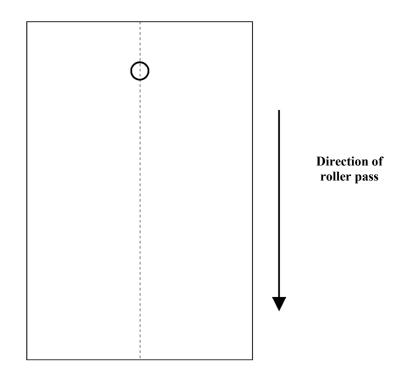
#### WAQTC

#### Method A - Average of two one-minute tests

- 1. Place the gauge on the test site, perpendicular to the roller passes.
- 2. Using a crayon (not spray paint), mark the outline or footprint of the gauge.
- 3. Extend the source rod to the backscatter position.
- 4. Take a one-minute test and record the wet density reading.
- 5. Rotate the gauge 90 degrees centered over the original footprint. Mark the outline or footprint of the gauge.
- 6. Take another one-minute test and record the wet density reading.
- If the difference between the two one-minute tests is greater than 40 kg/m<sup>3</sup> (2.5 lb/ft<sup>3</sup>), retest in both directions. If the difference of the retests is still greater than 40 kg/m<sup>3</sup> (2.5 lb/ft<sup>3</sup>) test at 180 and 270 degrees.
- 8. The density reported for each test site shall be the average of the two individual oneminute wet density readings.






E&B/ID 20-3

#### **IN-PLACE DENSITY**

#### WAQTC

#### Method B – One four-minute test

- 1. Place the gauge on the test site, parallel to the roller passes.
- 2. Using a crayon (not spray paint), mark the outline or footprint of the gauge.
- 3. Extend the source rod to the backscatter position.
- 4. Take one 4-minute test and record the wet density reading.



Method B Footprint of the gauge test site

52\_T355\_short\_20

E&B/ID 20-4

Pub. October 2021

#### WAQTC

## **Calculation of Results**

Percent (%) compaction is determined by comparing the in-place wet density as determined by this method to the appropriate agency density standard. See appropriate agency policy for use of density standards.

 $\% \ \textit{Compaction} = \frac{\textit{Corrected Reading}}{\textit{Maximum Density}} \times 100$ 

#### **Method A Example:**

| Reading #1:        | 141.5 lb/ft <sup>3</sup> |                                                  |
|--------------------|--------------------------|--------------------------------------------------|
| Reading #2:        | 140.1 lb/ft <sup>3</sup> | Are the two readings within the tolerance? (YES) |
|                    |                          |                                                  |
| Reading average:   | 140.8 lb/ft <sup>3</sup> |                                                  |
|                    |                          |                                                  |
| Core correction:   | $+2.1 \text{ lb/ft}^{3}$ |                                                  |
| Corrected reading: | 142.9 lb/ft <sup>3</sup> |                                                  |
|                    |                          |                                                  |
| Method B Example   | le:                      |                                                  |
| Reading:           | 140.8 lb/ft <sup>3</sup> |                                                  |
| Core correction:   | +2.1 lb/ft <sup>3</sup>  |                                                  |

Corrected reading 142.9 lb/ft<sup>3</sup>

## Example percent (%) compaction:

From the FOP for AASHTO T 209:

$$G_{mm} = 2.466$$

Theoretical Maximum Density =  $2.466 \times 62.245 lb/ft^3 = 153.5 lb/ft^3$ 

% Compaction = 
$$\frac{142.9 \, lb/ft^3}{153.5 \, lb/ft^3} \times 100 = 93.1\%$$

52 T355 short 20

E&B/ID 20-5

#### **IN-PLACE DENSITY**

#### WAQTC

## Report

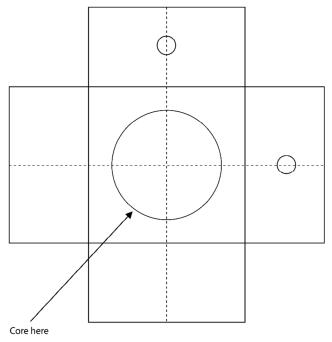
- On forms approved by the agency
- Test ID
- Location of test and thickness of layer tested
- Mixture type
- Make, model and serial number of the nuclear moisture-density gauge
- Calculated wet density of each measurement and any adjustment data
- Density standard
- Compaction to the nearest 0.1 percent
- Name and signature of operator

52\_T355\_short\_20

E&B/ID 20-6

## **APPENDIX – CORRELATION WITH CORES**

#### (Nonmandatory Information)


The bulk specific gravity  $(G_{mb})$  of the core is a physical measurement of the in-place asphalt mixture and can be compared with the nuclear density gauge readings. Comparing the core value to the corresponding gauge values, a correlation can be established.

The correlation can then be used to adjust the gauge readings to the in-place density of the cores. The core correlation is gauge specific and must be determined without traffic allowed on the pavement between nuclear density gauge readings and obtaining the core. When using multiple nuclear density gauges each gauge should be correlated to the core locations before removal of the core.

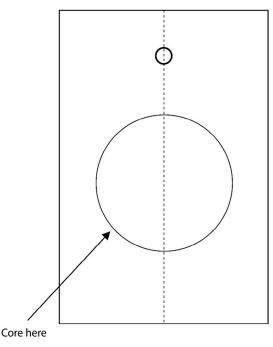
When density correlation with the FOP for AASHTO T 166 is required, correlation of the nuclear gauge with pavement cores shall be made on the first day's paving (within 24 hours) or from a test strip constructed before the start of paving. Cores must be taken before traffic is allowed on the pavement.

#### **Correlation with Cores**

- Determine the number of cores required for correlation from the agency's specifications. Cores shall be located on the first day's paving or on the test strip. Locate the test sites in accordance with the agency's specifications. Follow the "Procedure" section above to establish test sites and obtain densities using the nuclear gauge.
- 2. Obtain a pavement core from each of the test sites according to AASHTO R 67. The core should be taken from the center of the nuclear gauge footprint.



Method A – Footprint of the gauge test site. Core location in the center of the footprint.


52\_T355\_short\_20

E&B/ID 20-7

Pub. October 2021

T 355

T 355



Method B - Footprint of the gauge test site.

- 3. Determine the density of the cores by the FOP for AASHTO T 166, Bulk Specific Gravity of Compacted Asphalt Mixtures Using Saturated Surface Dry Specimens.
- 4. Calculate a correlation factor for the nuclear gauge reading as follows:
  - a. Calculate the difference between the core density and the average nuclear gauge density at each test site to the nearest  $1 \text{ kg/m}^3 (0.1 \text{ lb/ft}^3)$ . Calculate the average difference and standard deviation of the differences for the entire data set to the nearest  $1 \text{ kg/m}^3 (0.1 \text{ lb/ft}^3)$ .
  - b. If the standard deviation of the differences is equal to or less than 40 kg/m<sup>3</sup> (2.5 lb/ft<sup>3</sup>), the correlation factor applied to the average nuclear gauge density shall be the average difference calculated above in 4.a.
  - c. If the standard deviation of the differences is greater than 40 kg/m<sup>3</sup> (2.5 lb/ft<sup>3</sup>), the test site with the greatest variation from the average difference shall be eliminated from the data set and the data set properties and correlation factor recalculated following 4.a and 4.b.
  - d. If the standard deviation of the modified data set still exceeds the maximum specified in 4.b, additional test sites will be eliminated from the data set and the data set properties and correlation factor recalculated following 4.a and 4.b. If the data set consists of less than five test sites, additional test sites shall be established.
- *Note A1:* The exact method used in calculating the nuclear gauge correlation factor shall be defined by agency policy.
- *Note A2:* The above correlation procedure must be repeated if there is a new job mix formula. Adjustments to the job mix formula beyond tolerances established in the contract documents will constitute a new

52\_T355\_short\_20

E&B/ID 20-8

Pub. October 2021

job mix formula. A correlation factor established using this procedure is only valid for the particular gauge used in the correlation procedure. If another gauge is brought onto the project, it shall be correlated using the same procedure. Multiple gauges may be correlated from the same series of cores if done at the same time.

*Note A3:* For the purpose of this procedure, a job mix formula is defined as the percent and grade of paving asphalt used with a specified gradation of aggregate from a designated aggregate source. A new job mix formula may be required whenever compaction of the wearing surface exceeds the agency's specified maximum density or minimum air voids.

### Calculations

### **Correlation Factor**

$$\sqrt{\frac{\sum x^2}{n-1}}$$

Where:

| Σ   | = | Sum                                    |
|-----|---|----------------------------------------|
| X   | = | Difference from the average Difference |
| n-1 | = | number of data sets minus 1            |

### Example

| Core<br># | Core results<br>from T 166: | Average<br>Gauge<br>reading | Difference:             | X            | x <sup>2</sup> |
|-----------|-----------------------------|-----------------------------|-------------------------|--------------|----------------|
| 1         | 144.9 lb/ft <sup>3</sup>    | 142.1 lb/ft <sup>3</sup>    | 2.8 lb/ft <sup>3</sup>  | -0.7         | 0.49           |
| 2         | 142.8 lb/ft <sup>3</sup>    | 140.9 lb/ft <sup>3</sup>    | 1.9 lb/ft <sup>3</sup>  | 0.2          | 0.04           |
| 3         | 143.1 lb/ft <sup>3</sup>    | 140.7 lb/ft <sup>3</sup>    | 2.4 lb/ft <sup>3</sup>  | -0.3         | 0.09           |
| 4         | 140.7 lb/ft <sup>3</sup>    | 138.9 lb/ft <sup>3</sup>    | $1.8 \text{ lb/ft}^3$   | 0.3          | 0.09           |
| 5         | 145.1 lb/ft <sup>3</sup>    | 143.6 lb/ft <sup>3</sup>    | $1.5 \text{ lb/ft}^3$   | 0.6          | 0.36           |
| 6         | 144.2 lb/ft <sup>3</sup>    | 142.4 lb/ft <sup>3</sup>    | $1.8 \text{ lb/ft}^3$   | 0.3          | 0.09           |
| 7         | 143.8 lb/ft <sup>3</sup>    | 141.3 lb/ft <sup>3</sup>    | 2.5 lb/ft <sup>3</sup>  | -0.4         | 0.16           |
| 8         | 142.8 lb/ft <sup>3</sup>    | 139.8lb/ft <sup>3</sup>     | 3.0 lb/ft <sup>3</sup>  | 0.9          | 0.81           |
| 9         | 144.8 lb/ft <sup>3</sup>    | 143.3 lb/ft <sup>3</sup>    | $1.5 \text{ lb/ft}^3$   | -0.6         | 0.36           |
| 10        | 143.0 lb/ft <sup>3</sup>    | 141.0 lb/ft <sup>3</sup>    | 2.0 lb/ft <sup>3</sup>  | -0.1         | <u>0.01</u>    |
|           | Average Differen            | ce:                         | +2.1 lb/ft <sup>3</sup> | $\Sigma x^2$ | = 2.5          |

52\_T355\_short\_20

E&B/ID 20-9

Pub. October 2021

IN-PLACE DENSITY

WAQTC

Number of data sets

$$n-1 = 10 - 1 = 9$$

**Standard deviation** 

standard deviation 
$$=\sqrt{\frac{2.5}{9}} = 0.53$$

Given:

Sum of 
$$x^2 = 2.5$$

Number of data sets = 9

The standard deviation of 0.53 is less than 2.5 therefore no cores are eliminated. The average difference from all ten cores is used.

52\_T355\_short\_20

E&B/ID 20-10

Pub. October 2021

### WAQTC

## PERFORMANCE EXAM CHECKLIST

# IN-PLACE DENSITY OF ASPHALT MIXTURES BY NUCLEAR METHODS FOP FOR AASHTO T 355

| Pa  | rticipant Name ]                                                                                                                          | Exam Date        |               |         |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|---------|--|
| Re  | cord the symbols "P" for passing or "F" for failing on each step o                                                                        | f the checklist. |               |         |  |
| Pr  | ocedure Element                                                                                                                           |                  | Trial 1       | Trial 2 |  |
| 1.  | Gauge turned on approximately 10 to 20 minutes before use?                                                                                |                  |               |         |  |
| 2.  | Gauge calibrated, and standard count recorded?                                                                                            |                  |               |         |  |
| 3.  | Test location selected appropriately [600 mm (24 in.) from ve<br>projections or 10 m (30 ft.) from any other radioactive sources          |                  |               |         |  |
| 4.  | Filler spread evenly over test site?                                                                                                      |                  |               |         |  |
| 5.  | Excess filler material removed by striking off the surface?                                                                               |                  |               |         |  |
| 6.  | Gauge placed on pavement surface and footprint of gauge ma                                                                                | rked?            |               |         |  |
| 7.  | Source rod extended to backscatter position?                                                                                              |                  |               |         |  |
| 8.  | Method A:                                                                                                                                 |                  |               |         |  |
|     | a. One-minute count taken; gauge rotated 90°, reseated, and one-minute count taken?                                                       | another          |               |         |  |
|     | b. Densities averaged?                                                                                                                    |                  |               |         |  |
|     | c. If difference of the wet densities is greater than $40 \text{ kg/m}^3$ (2.5 lb/ft <sup>3</sup> ), retest conducted in both directions? |                  |               |         |  |
| 9.  | Method B:                                                                                                                                 |                  |               |         |  |
|     | a. One four-minute count taken?                                                                                                           |                  |               |         |  |
| 10. | . Core correlation applied if required?                                                                                                   |                  |               |         |  |
| 11. | . Percent compaction calculated correctly?                                                                                                |                  |               |         |  |
| Co  | omments: First attempt: PassFail Se                                                                                                       | cond attempt: Pa | ss <u> </u> I | Fail    |  |
|     |                                                                                                                                           |                  |               |         |  |
| Ex  | xaminer SignatureV                                                                                                                        | VAQTC #:         |               |         |  |
| 42  | T355 pr 20 E&B/ID 11-13                                                                                                                   | Pub              | . October     | 2021    |  |

Page 13 of 14

IN-PLACE DENSITY

WAQTC

42\_T355\_pr\_20

E&B/ID 11-14

Pub. October 2021

WSDOT Materials Manual M 46-01.40 January 2022



# WSDOT Standard Operating Procedure SOP 615

# Determination of the % Compaction for Embankment & Untreated Surfacing Materials Using the Nuclear Moisture-Density Gauge

### 1. Scope

This procedure covers the procedures for determining the in-place density, moisture content, gradation analysis, oversize correction, and determination of maximum density of compacted soils and untreated surfacing materials using a nuclear density device in the direct transmission mode.

### 2. References

- a. AASHTO T 99 for Method of Test for Moisture-Density Relations of Soils
- b. AASHTO T 180 for Method of Test for Moisture-Density Relations of Soils
- c. T 255 WSDOT FOP for AASHTO for Total Moisture Content of Aggregate by Drying
- d. T 272 WSDOT FOP for AASHTO for Family of Curves One Point Method
- e. T 310 WSDOT FOP for AASHTO for In-Place Densities and Moisture Content of Soils and Soil-Aggregate by Nuclear Methods (Shallow Depth)
- f. WAQTC TM 15 Laboratory Theoretical Maximum Dry Density of Granular Soil and Soil/ Aggregate

### 3. Test Location

When selecting a test location, the tester shall visually select a site where the least compactive effort has been applied. Select a test location where the gauge will be at least 6 in (150 mm) away from any vertical mass. If closer than 24 in (600 mm) to a vertical mass, such as in a trench, follow gauge manufacturer correction procedures.

When retesting is required due to a failing test; retest within a 10-foot radius of the original station and offset.

### 4. Nuclear Density Test

Determine the dry density and moisture content of soils and untreated surfacing materials using the nuclear moisture-density gauge in accordance with WSDOT FOP for AASHTO T 310, and record in the Materials Testing System (MATS), WSDOT Form 350-074, Field Density Test, or other form approved in writing by the State Materials Engineer.

### 5. Oversize Determination

### a. AASHTO T 99 and WAQTC TM 15

A sample weighing a minimum of 4.08 kg (9 lbs) will be taken from beneath the gauge. Care shall be taken to select material that is truly representative of where the moisture density gauge determined the dry density and moisture content.

There are two methods for determining the percentage of material retained on the No. 4 sieve:

- 1. Method 1 material that allows for the easy separation of fine and coarse aggregate.
  - a. Dry the sample until no visible free moisture is present (material may still appear damp but will not be shiny).
  - b. Determine and record the mass of the sample to the nearest 0.1 percent of the total mass or better.
  - c. Shake the sample by hand over a verified No. 4 (4.75 mm) sieve taking care not to overload the sieve. Overloading for a No. 4 (4.75 mm) sieve is defined as; A retained mass of more than 800 g (1.8 lbs), on a 12 inch sieve, or 340 g, (0.75 lbs); on an 8 inch sieve after sieving is complete.

*Note 1:* If the tester suspects a sieve will be overloaded the sample can be separated into smaller increments and recombined after sieving.

- d. Determine and record the mass of the material retained on the No. 4 (4.75 mm) sieve to the nearest 0.1 percent of the total mass or better and record.
- 2. Method 2 recommended for crushed surfacing materials, materials with high clay content, or other granular materials that are at or near the optimum moisture content for compaction.
  - a. Determine and record the mass of the sample to the nearest 0.1 percent of the total mass or better and record.
  - b. Shake sample by hand over a verified No. 4 (4.75 mm) sieve. Do not overload the sieve. (See Section 1a and Note 1 for overload definition and information on how to prevent overloading of a sieve)
  - c. Shake material until no particles are observed passing the No. 4 (4.75 mm) sieve
  - d. Rinse the sample with water
  - e. Continue rinsing the material until it is visibly free of any coating or minus No. 4 material.
  - f. Place the washed material, retained on the No. 4 (4.75 mm) sieve, into a tared container and blot until no visible free moisture is present on the material (material may still appear damp but will not appear shiny).
  - g. Determine and record the mass of the material retained on the No. 4 (4.75 mm) sieve to the nearest 0.1 percent of the total mass or better.

- b. AASHTO T 180
  - 1. Follow either Method 1 or Method 2 in 5 a. with the following exception; sieve the material over a <sup>3</sup>/<sub>4</sub> in (19.0 mm) sieve.
  - Do not overload the ¾" (19.0 mm) sieve. Overloading of a ¾" (19.0 mm) sieve is defined as: A retained mass of more than 3.2 kg (7.04 pounds) on a 12 inch sieve or 1.4 kg (3.08 pounds) on an 8 inch sieve after sieving is complete.

# 6. Calculations

a. Calculate the percent retained as follows:

% retained (Pc) =  $100 \times \frac{\text{mass retained on sieve}}{\text{original mass}}$  (round to nearest percent)

b. Calculate percent passing as follows:

% passing = 100 – % retained

c. Calculate the dry density as follows:

$$d = \frac{100}{100 + W}$$
 (m)

Where:

- d = dry field density of total sample, pcf
- m = total field wet density, pcf
- W = moisture content of total field sample
- d. Calculate the corrected theoretical maximum density as follows:

$$\mathsf{D}_{\mathsf{d}} = \frac{100 \times (\mathsf{D}_{\mathsf{f}}) \times (k)}{[(\mathsf{D}_{\mathsf{f}}) \times (\mathsf{P}_{\mathsf{c}}) + (k) \times (\mathsf{P}_{\mathsf{f}})]}$$

Where:

- D<sub>d</sub> = corrected dry density of combined fine and oversized particles, expressed as lbs/ft<sup>3</sup>.
- $D_f$  = dry density of fine particles expressed as lbs/ft<sup>3</sup>, determined in lab.
- $P_c$  = percent of coarse particles, by weight.
- $P_f$  = percent of fine particles, by weight.
- *k* = 62.4 x Bulk Specific Gravity.

Calculate in-place dry density to the nearest 0.1 lbs/ft $^3$ .

**Note 2:** If the specific gravity of the coarse particles has been determined, use this value in the calculation for the "k" value. If the specific gravity is unknown then use 2.67. Either AASHTO T 85 or WAQTC TM 15 Apparent Specific Gravity may be used to determine the specific gravity of the coarse particles.

e. Calculate the percent of compaction using the following equation:

% compaction = Dry Density (lbs/ft<sup>3</sup>) corrected theoretical maximum density (lbs/ft<sup>3</sup>)

### 7. Density Curve Tables

The Materials Testing System (MATS) Density Curve Tables is the WSDOT preferred method for determining the corrected theoretical maximum density.

- MATS calculates the corrected theoretical maximum density in accordance with AASHTO T 99 and T 180 ANNEX A1. (Correction of Maximum Dry Density and Optimum Moisture for Oversized Particles) and reports the results in the Density Curve Table.
- b. To determine the corrected theoretical maximum density using the Density Curves Table enter the Table at the line corresponding to the % passing or % retained (T 99 & T 180 requires percent retained, T 606 requires percent passing), read across to the column labeled Max this number is the Corrected Theoretical Maximum Density.

### 8. Report

- a. Report the results using one or more of the following:
  - Materials Testing System (MATS)
  - WSDOT Form 350-074 and 351-015
  - Form approved in writing by the State Materials Engineer
- b. Report the percent of compaction to the nearest whole number.

# **Performance Exam Checklist**

# WSDOT Standard Operating Procedure SOP 615 Determination of the % Compaction for Embankment & Untreated Surfacing Materials Using the Nuclear Moisture-Density Gauge

| Parti | cipant Name                |          |             | Exam Date                                                                                                         |     |    |
|-------|----------------------------|----------|-------------|-------------------------------------------------------------------------------------------------------------------|-----|----|
| Proce | edure Elemer               | nt       |             |                                                                                                                   | Yes | No |
| 1.    |                            |          | ppy of the  | current procedure on hand?                                                                                        |     |    |
| 2.    | All equipme                | nt is fu | inctioning  | according to the test procedure, and if required,<br>erification tags present?                                    |     |    |
|       | ation Analysi<br>Method 1  | is       |             |                                                                                                                   |     |    |
| 1.    | Sample Drie recorded?      | ed to a  | SSD condi   | tion (dried until no visible free moisture present) and mass                                                      |     |    |
| 2.    | Sample allow               | wed to   | cool suffi  | ciently prior to sieving?                                                                                         |     |    |
| 3.    | Sample was of time?        | shakei   | n by hand   | through the appropriate sieve for a sufficient period                                                             |     |    |
| 4.    | Recorded m                 | ass of   | material re | etained on the appropriate sieve?                                                                                 |     |    |
| 5.    | Calculated a               | and rec  | orded per   | cent of material retained and passing the appropriate sieve?                                                      |     |    |
| 3(B)  | Method 2                   |          |             |                                                                                                                   |     |    |
| 1.    | Mass of sam                | nple de  | termined    | prior to washing?                                                                                                 |     |    |
| 2.    | Material cha               | arged v  | vith water  | in suitable container and agitated to suspend fines?                                                              |     |    |
| 3.    | Sample deca<br>overloading |          | -           | ed sieve for a sufficient amount of time without                                                                  |     |    |
| 4.    | Retained ma                | aterial  | dried to SS | SD condition and mass determined?                                                                                 |     |    |
| 5.    | Recorded m                 | ass of   | material re | etained on appropriate sieve?                                                                                     |     |    |
| 6.    | Calculated a               | and rec  | orded per   | cent of material retained and passing appropriate sieve?                                                          |     |    |
| Corre | ection for Co              | arse Pa  | articles    |                                                                                                                   |     |    |
| 7.    | maximum de                 | ensity,  | based on    | Curve Table used to determine the corrected theoretical the percent passing or retained on the appropriate sieve? |     |    |
| 8.    | All calculation            | ons pei  | rtormed co  | prrectly?                                                                                                         |     |    |
| First | Attempt: Pa                | ass      | Fail        | Second Attempt: Pass Fail                                                                                         |     |    |

Signature of Examiner \_\_\_\_\_

Comments:



# WSDOT Test Method T 819

## Making and Curing Self-Compacting Concrete Test Specimens in the Field

- 1. The cylinders will be made and cured in accordance with WSDOT FOP for AASHTO R 100 with the following modifications:
  - 9. Molding Specimens
    - 9.2 Casting Cylinders is revised to read:

Place the concrete in the mold using a scoop, blunted trowel or shovel. Molds shall be filled in one layer by pouring material from a suitable container into the mold. Do not rod, vibrate, or tap the mold.

*Note:* Filling the mold with concrete by using multiple scoops or by pouring from a bucket or similar container has been found to be acceptable.

- 9.3 Consolidation is deleted
- 9.4 Finishing is revised to read:

Strike off the surface of the concrete level with the top of the mold using a float, trowel or steel strike off bar. Immediately after finishing place a plastic cylinder lid on the cylinder.

# **Performance Exam Checklist**

# *Making and Curing Self-Compacting Concrete Test Specimens in the Field WSDOT T 819*

| Part  | icipant Name                        | Exam Date                                             |          |
|-------|-------------------------------------|-------------------------------------------------------|----------|
| Proc  | edure Element                       |                                                       | Yes No   |
| 1.    | The tester has a copy of the cu     | rrent procedure on hand?                              |          |
| 2.    | Molds placed on a level, rigid, ł   | norizontal surface free of vibration?                 |          |
| 3.    | Making of specimens begun wi        | thin 15 minutes of sampling?                          |          |
| 4.    | Concrete poured into the mold       | using a suitable container?                           |          |
| 5.    | Mold filled in one lift?            |                                                       |          |
| 6.    | Excess concrete struck off?         |                                                       |          |
| 7.    | Specimens covered immediate         | ly with plastic cylinder lid?                         |          |
| First | Attempt: Pass Fail                  | Second Attempt: Pass Fail                             |          |
| Sign  | ature of Examiner                   |                                                       |          |
| This  | checklist is derived, in part, from | n copyrighted material printed in ACI CP-1, published | l by the |

American Concrete Institute.

Comments:



# WSDOT Test Method SOP 914

### Practice for Sampling of Geosynthetic Material for Testing

#### 1. Scope

a. This practice covers the procedure for sampling Geosynthetic Material for testing.

#### 2. Definitions

- a. Geogrid A regular network of integrally connected polymer tensile elements with an aperture geometry sufficient to permit mechanical interlock with the surrounding backfill.
- b. Geosynthetic Material general term which includes all geotextiles, geogrids, and prefabricated drainage mats.
- c. Geotextile Any permeable textile used with foundation, soil, rock, earth, or any other geotechnical material, as an integral part of a manmade product, structure, or system.
- d. Lot All geosynthetic material rolls within a consignment (i.e., all rolls sent to the project site) which were manufactured at the same manufacturing plant having the same product name and specifications, style, or physical characteristics of a particular geosynthetic material product.
- e. Lot Sample Sample(s) from one or more geosynthetic material rolls taken at random to represent an acceptance sampling lot and used as a source of laboratory samples.
- f. Production Unit As referred to in this practice, it shall be considered to be synonymous with the geosynthetic material roll as shipped by the manufacturer. Two or more geosynthetic material rolls joined together by sewn seams shall be considered as separate rolls.
- g. Minimum Average Roll Value The test results of any sampled roll in a lot shall meet or exceed the minimum values specified.

### 3. Significance and Use

- a. Sampling is an important part of testing and the sampler should make every effort to obtain samples that will show the nature and condition of the materials they represent.
- b. This sampling procedure will provide a representation of the lot which is adequate to establish minimum average roll values as defined by this practice.

#### 4. Procedure

- a. Divide the shipment or consignment into lots as defined in 2.d.
- b. Determine the number of rolls in the shipment or consignment to be sampled using Table 1.

|                        | Number of Rolls to be   |
|------------------------|-------------------------|
| Number of Rolls in Lot | Selected for Lot Sample |
| 1 to 24                | 1                       |
| 25 to 49               | 2                       |
| 50 to 99               | 3                       |
| 100 to 125             | 5                       |
| 125 to 216             | 6                       |
| 217 to 343             | 7                       |
| 344 to 512             | 8                       |
| 513 to 729             | 9                       |
| 730 to 1,000           | 10                      |

### Table 1 Number of Rolls to be Selected as Lot Sample

- c. Laboratory sample selection.
  - (1) Obtain a laboratory sample from each roll in the Lot Sample. The sample shall be a minimum of 6 feet long by the full width of the geosynthetic material roll with a total area greater than or equal to 6.0 yd<sup>2</sup>.
  - (2) The laboratory sample should not be taken from the outer wrap of the roll nor the inner wrap of the core (i.e., do not take the sample from the very ends of the roll).
  - (3) Protect the sample from exposure to Ultraviolet light.

### 5. Sample Submittal

a. All geotextile samples submitted to the State Material Laboratory are to be prepared and shipped as follows:

Roll sample around a 4 in diameter minimum, tube such as PCV pipe or cardboard mailing tube and wrap to protect sample from shipping damage and ultraviolet light (UV) exposure.

- b. If sample is for Acceptance of Lots used on project, the following information must be submitted with the sample:
  - (1) Manufacturer's name and current address.
  - (2) Full product name.
  - (3) Roll number(s).
  - (4) Proposed use(s).
  - (5) Certified test results from the manufacturer.
  - (6) The Lot Number being submitted for acceptance. In lieu of a manufacturer provided Lot Number, the Bill of Lading Number can be used.

Testing by the State Materials Laboratory will not begin until all of the required information is received.



# WSDOT Test Method T 915

## Practice for Conditioning of Geotextiles for Testing

#### 1. Scope

a. This practice covers a procedure for conditioning geotextile specimens for testing and establishes atmospheric conditions which are acceptable for testing when the standard atmosphere for testing cannot be obtained due to local laboratory conditions.

#### 2. Applicable Documents

a. ASTM Standards.

| D 123  | Terminology Relating to Textiles                                                             |
|--------|----------------------------------------------------------------------------------------------|
| D 1776 | Practice for Conditioning Textiles for Testing                                               |
| D 4439 | Terminology for Geotextiles                                                                  |
| D 4533 | Standard Test Method for Trapezoid Tearing Strength of Geotextiles                           |
| D 4595 | Standard Test Method for tensile Properties of Geotextiles by the Wide-Width<br>Strip Method |
| D 4632 | Standard Test Method for Breaking Load and Elongation of Geotextiles<br>(Grab Method)        |

### 3. Definitions

- a. Atmosphere for Testing Geotextiles Air maintained at a relative humidity of  $55 \pm 25$  percent relative humidity and temperature of  $70^\circ \pm 4^\circ$ F ( $21^\circ \pm 2^\circ$ C).
- b. Geotextile Any permeable textile used with foundation, soil, rock, earth, or any other geotechnical material, as an integral part of a manmade product, structure, or system.
- c. Specimen A specific portion of a material or laboratory sample upon which a test is performed or which is taken for that purpose.
- d. Preconditioning Atmospheric conditioning of a test specimen prior to testing in a specified environment in which the specimen is allowed to come to equilibrium with that specified preconditioning environment.

### 4. Summary of Practice

a. Specimens are preconditioned by soaking them in distilled water for a specified period of time and are tested at ambient laboratory room temperature and humidity conditions without allowing the specimens time to come to equilibrium with the ambient testing atmosphere.

### 5. Uses and Significance

a. The conditioning prescribed in this practice is designed to obtain reproducible test results on geotextiles.

### 6. Apparatus

- a. Water filled pan for soaking specimens.
- b. Equipment for recording the temperature of the air and the water, and the humidity of the air.

### 7. Procedure

- a. Precondition specimens by immersing them in distilled water maintained at a temperature of 70°  $\pm$  4°F (21  $\pm$  2°C). The time of immersion must be sufficient to wet-out the specimens thoroughly, but must be a minimum of two hours. To obtain thorough wetting, add not more than 0.05 percent of a nonionic neutral wetting agent to the water.
- b. After the specimens have been thoroughly wetted, remove each specimen from the water, and allow excess water contained in the pores of the specimen to drain from the specimen for a period of time less than or equal to one minute. After the specimen has drained during the maximum allowed time period of one minute, the specimen test must begin before nine minutes of time have elapsed from the end of the draining period.

**Note 1:** If more than a total of nine minutes from the time the specimen is removed from the water is allowed to elapse before the specimen test is actually begun, the specimen should not be considered to be thoroughly wetted. If this occurs, the specimen should be reimmersed for a minimum of two hours before a test is attempted again for that specimen. Thorough wetting is needed to ensure that the specimen is not affected by the ambient humidity conditions during testing if those ambient conditions are not at the standard atmosphere for testing.

- c. The atmosphere for testing, geotextiles must be maintained at a temperature of  $70^{\circ} \pm 4^{\circ}$ F (21 ± 2°C). and a relative humidity of 55 ± 25 percent.
- d. If dry testing of the geotextile is required in addition to wet testing, the specimens must be conditioned in the atmosphere for testing as stated in Section 7.3. Specimen conditioning shall be accomplished in this case by allowing the specimens to reach moisture equilibrium in the atmosphere for testing. Equilibrium is considered to have been reached when the change in the mass of the specimen in successive weighings made at intervals of not less than two hours does not exceed 0.1 percent of the mass of the specimen immersion requirements do not apply to specimens which are to be tested dry. Specimens tested dry must be tested in the atmosphere for testing as previously defined.

| Performance Exam Checklist Practice for Conditioning of Geotextiles for Testing |                                                                                                                                                                                                                      |     |    |  |  |  |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|--|--|--|
| WSL                                                                             | DOT T 915                                                                                                                                                                                                            |     |    |  |  |  |
| Parti                                                                           | cipant Name Exam Date                                                                                                                                                                                                |     |    |  |  |  |
| Reco                                                                            | rd the symbols "P" for passing or "F" for failing on each step of the checklist.                                                                                                                                     |     |    |  |  |  |
| Proc                                                                            | edure Element                                                                                                                                                                                                        | Yes | No |  |  |  |
| 1.                                                                              | The tester has a copy of the current procedure on hand?                                                                                                                                                              |     |    |  |  |  |
| 2.                                                                              | All equipment is functioning according to the test procedure, and if required has the current calibration/standardization/check and maintenance tags present?                                                        |     |    |  |  |  |
| 3.                                                                              | Were test specimens, pre-conditioned in distilled water with not more than 0.05 % of a nonionic neutral wetting agent added at 70 $\pm$ 4° F (21 $\pm$ 2° C), thoroughly wetted and soaked for a minimum of 2 hours? |     |    |  |  |  |
| 4.                                                                              | Were test specimens removed for testing and allowed to drain for 1 minute?                                                                                                                                           |     |    |  |  |  |
| 5.                                                                              | Was testing of specimen started before 9 minutes had elapsed from end of draining period?                                                                                                                            |     |    |  |  |  |
| 6.                                                                              | If more than 9 minutes had elapsed, was test specimen returned to water bath for a minimum of 2 hours?                                                                                                               |     |    |  |  |  |
| 7.                                                                              | Was atmosphere for testing done at temperature of 70 $\pm$ 4° F (21 $\pm$ 2° C) and relative humidity of 55 $\pm$ 25%?                                                                                               |     |    |  |  |  |
| 8.                                                                              | If dry testing is required, were the specimens conditioned according to question, number 3 above?                                                                                                                    |     |    |  |  |  |
| 9.                                                                              | Was successive weighing done at intervals of 2 hours min. to determine max loss of 0.1 percent?                                                                                                                      |     |    |  |  |  |
| First                                                                           | Attempt: Pass Fail Second Attempt: Pass Fail                                                                                                                                                                         |     |    |  |  |  |
| Signa                                                                           | ature of Examiner                                                                                                                                                                                                    |     |    |  |  |  |
| Com                                                                             | ments:                                                                                                                                                                                                               |     |    |  |  |  |